SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leibiger IB) "

Sökning: WFRF:(Leibiger IB)

  • Resultat 1-10 av 93
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kohler, M, et al. (författare)
  • On-line monitoring of apoptosis in insulin-secreting cells
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:12, s. 2943-2950
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis was monitored in intact insulin-producing cells both with microfluorometry and with two-photon laser scanning microscopy (TPLSM), using a fluorescent protein based on fluorescence resonance energy transfer (FRET). TPLSM offers three-dimensional spatial information that can be obtained relatively deep in tissues. This provides a potential for future in vivo studies of apoptosis. The cells expressed a fluorescent protein (C-DEVD-Y) consisting of two fluorophores, enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP), linked by the amino acid sequence DEVD selectively cleaved by caspase-3–like proteases. FRET between ECFP and EYFP in C-DEVD-Y could therefore be monitored on-line as a sensor of caspase-3 activation. The relevance of using caspase-3 activation to indicate β-cell apoptosis was demonstrated by inhibiting caspase-3–like proteases with Z-DEVD-fmk and thereby showing that caspase-3 activation was needed for high-glucose–and cytokine-induced apoptosis in the β-cell and for staurosporine-induced apoptosis in RINm5F cells. In intact RINm5F cells expressing C-DEVD-Y and in MIN6 cells expressing the variant C-DEVD-Y2, FRET was lost at 155 ± 23 min (n = 9) and 257 ± 59 min (n = 4; mean ± SE) after activation of apoptosis with staurosporine (6 μmol/l), showing that this method worked in insulin-producing cells.
  •  
2.
  • Barker, CJ, et al. (författare)
  • Phosphorylated inositol compounds in beta -cell stimulus-response coupling
  • 2002
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 283:6, s. E1113-E1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic β-cell function is essential for the regulation of glucose homeostasis in humans, and its impairment leads to the development of type 2 diabetes. Inputs from glucose and cell surface receptors act together to initiate the β-cell stimulus-response coupling that ultimately leads to the release of insulin. Phosphorylated inositol compounds have recently emerged as key players at all levels of the stimulus-secretion coupling process. In this current review, we seek to highlight recent advances in β-cell phosphoinositide research by dividing our examination into two sections. The first involves the events that lead to insulin secretion. This includes both new roles for inositol polyphosphates, particularly inositol hexakisphosphate, and both conventional and 3-phosphorylated inositol lipids. In the second section, we deal with the more novel concept of the autocrine role of insulin. Here, released insulin initiates signal transduction cascades, principally through the activity of phosphatidylinositol 3-kinase. This new round of signal transduction has been established to activate key β-cell genes, particularly the insulin gene itself. More controversially, this insulin feedback has also been suggested to either terminate or enhance insulin secretion events.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 93

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy