SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leip Adrian) "

Sökning: WFRF:(Leip Adrian)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Latka, Catharina, et al. (författare)
  • The potential role of producer and consumer food policies in the EU to sustainable food and nutrition security
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • EU sustainable food and nutrition security is no sure-fire success. The future ofthe agro-food system is uncertain and subject to different macro-level trends.Previous analysis revealed the role of food system drivers creating challenges andopportunities for dietary and environmental improvements under certain futureconstellations. However, these challenges and opportunities need to be addressed by policies to allow for actual improvements in the sustainabilityperformance of EU food systems, for people, planet and profit. In this deliverable,an assessment and pre-test of potential policy measures is carried out. The policyanalyses are contrasted to a ‘business-as-usual’ baseline scenario with currenttrends of food system drivers. We apply the SUSFANS modelling toolbox in orderto test relevant policy measures in four distinct aqua-agro-food policy sectors.Regarding health and nutrition of the EU population, we provide a ranking ofpotential dietary policies and interventions based on their effectiveness,implementation costs and restrictiveness for consumers and producers. Based onthis overview, options for health and nutrition policy are designed containing amixture of different policy instruments. These apply – in line with the allocationof policy responsibilities in the EU - at the level of individual member states andnot at the realms of an EU policy. In the context of the Common AgriculturalPolicy (CAP), we assess the impact of a livestock density restriction on EU Agricultural areas. Results indicate a reduction of soil nutrient surpluses (-9 to -13%) and of greenhouse gas emissions (-9%) at EU average and considerably stronger in the livestock density and over-fertilization hotspots. Trade openness restricts the impact on food consumption and dietary change of EU consumers. Three Common Fisheries Policies (CFP) are tested with the newly developed fish modules of GLOBIOM and CAPRI: Directing capture in EU waters to levels that keep fish stocks at the maximum sustainable yield (MSY), or at the maximum economic yield (MEY), and the implementation of national aquaculture growth plans composed by EU member states. Our results show limited policy impacts due to the rlatively small size of the EU fish producing sector with some trade butlimited consumption changes. Finally, different storage policies are tested with the new short-term volatility module of GLOBIOM. The scenarios reveal that storage availability and intervention prices reduce price volatility caused by yield shocks. The assessments illustrate that individual, yet unaligned policy measures can already contribute significantly to reaching sustainable food and nutritionsecurity. On the way to the final foresight assessment extensions are require regarding a) metrics quantifiability, b) the harmonization of metrics computationapproaches, and c) smaller model improvements
  •  
2.
  •  
3.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2017
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:5, s. 2307-2362
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 C UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH(4) yr (-1) (EDGAR v5.0) and 19.0 TgCH(4) yr(-1) (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 TgCH(4) yr(-1). The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 TgCH(4) yr(-1). Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 TgCH(4) yr(-1)) and surface network (24.4 TgCH(4) yr (-1)). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 TgCH(4) yr(-1). For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN(2)Oyr(-1), respectively, agreeing with the NGHGI data (0.9 0.6 TgN(2)Oyr(-1)). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 TgN(2)Oyr(-1), respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU CUK scale and at the national scale.
  •  
4.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2019
  • 2023
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1197-1268
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990-2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 TgCH(4) yr(-1) (EDGARv6.0, last year 2018) and 18.4 TgCH(4) yr(-1) (GAINS, last year 2015), close to the NGHGI estimates of 17 :5 +/- 2 :1 TgCH(4) yr(-1). TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 TgCH(4) yr(-1). Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 TgCH(4) yr(-1) inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH-HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 TgCH(4) yr(-1). For N2O emissions, over the 2015-2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 TgN(2)Oyr(-1), close to the NGHGI data (0 :8 +/- 55% TgN(2)Oyr(-1)). Over the same period, the mean of TD global and regional inversions was 1.4 TgN(2)Oyr(-1) (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 C UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs. The referenced dataset srelated to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023).
  •  
5.
  • Vanham, Davy, et al. (författare)
  • Environmental footprint family to address local to planetary sustainability and deliver on the SDGs
  • 2019
  • Ingår i: Science of the Total Environment. - : ELSEVIER. - 0048-9697 .- 1879-1026. ; 693
  • Forskningsöversikt (refereegranskat)abstract
    • The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators. Elsevier B.V.
  •  
6.
  • Zurek, Monika, et al. (författare)
  • Assessing Sustainable Food and Nutrition Security of the EU Food System-An Integrated Approach
  • 2018
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Steering the EU food system towards a sustainability transformation requires a vast and actionable knowledge base available to a range of public and private actors. Few have captured this complexity by assessing food systems from a multi-dimensional and multi-level perspective, which would include (1) nutrition and diet, environmental and economic outcomes together with social equity dimensions and (2) system interactions across country, EU and global scales. This paper addresses this gap in food systems research and science communication by providing an integrated analytical approach and new ways to communicate this complexity outside science. Based on a transdisciplinary science approach with continuous stakeholder input, the EU Horizon2020 project 'Metrics, Models and Foresight for European SUStainable Food And Nutrition Security' (SUSFANS) developed a five-step process: Creating a participatory space; designing a conceptual framework of the EU food system; developing food system performance metrics; designing a modelling toolbox and developing a visualization tool. The Sustainable Food and Nutrition-Visualizer, designed to communicate complex policy change-impacts and trade-off questions, enables an informed debate about trade-offs associated with options for change among food system actors as well as in the policy making arena. The discussion highlights points for further research related to indicator development, reach of assessment models, participatory processes and obstacles in science communication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy