SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lejonklou Margareta Halin 1966 ) "

Sökning: WFRF:(Lejonklou Margareta Halin 1966 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alavian-Ghavanini, Ali, et al. (författare)
  • Prenatal Bisphenol A Exposure is Linked to Epigenetic Changes in Glutamate Receptor Subunit Gene Grin2b in Female Rats and Humans
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bisphenol A (BPA) exposure has been linked to neurodevelopmental disorders and to effects on epigenetic regulation, such as DNA methylation, at genes involved in brain function. High doses of BPA have been shown to change expression and regulation of one such gene, Grin2b, in mice. Yet, if such changes occur at relevant doses in animals and humans has not been addressed. We investigated if low-dose developmental BPA exposure affects DNA methylation and expression of Grin2b in brains of adult rats. Furthermore, we assessed associations between prenatal BPA exposure and Grin2b methylation in 7-year old children. We found that Grin2b mRNA expression was increased and DNA methylation decreased in female, but not in male rats. In humans, prenatal BPA exposure was associated with increased methylation levels in girls. Additionally, Iow APGAR scores, a predictor for increased risk for neurodevelopmental diseases, were associated with higher Grin2b methylation levels in girls. Thus, we could link developmental BPA exposure and Iow APGAR scores to changes in the epigenetic regulation of Grin2b, a gene important for neuronal function, in a sexual dimorphic fashion. Discrepancies in exact locations and directions of the DNA methylation change might reflect differences between species, analysed tissues, exposure level and/or timing.
  •  
2.
  • Dunder, Linda, et al. (författare)
  • Low-dose developmental bisphenol A exposure alters fatty acid metabolism in Fischer 344 rat offspring
  • 2018
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 166, s. 117-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Bisphenol A (BPA) is an endocrine disruptor and also a suggested obesogen and metabolism-disrupting chemical. Accumulating data indicates that the fatty acid (FA) profile and their ratios in plasma and other metabolic tissues are associated with metabolic disorders. Stearoyl-CoA desaturase 1 (SCD-1) is a key regulator of lipid metabolism and its activity can be estimated by dividing the FA product by its precursor measured in blood or other tissues. Objective: The primary aim of this study was to investigate the effect of low-dose developmental BPA exposure on tissue-specific FA composition including estimated SCD-1 activity, studied in 5- and 52-week (wk)-old Fischer 344 (F344) rat offspring. Methods: Pregnant F344 rats were exposed to BPA via their drinking water corresponding to 0: [CTRL], 0.5: [BPA0.5], or 50 mu g/kg BW/day: [BPA50], from gestational day 3.5 until postnatal day 22. Results: BPA0.5 increased SCD-16 (estimated as the 16:1n-7/16:0 ratio) and SCD-18 (estimated as the 18:1n-9/ 18:0 ratio) indices in inguinal white adipose tissue triglycerides (iWAT-TG) and in plasma cholesterol esters (PL-CE), respectively, in 5-wk-old male offspring. In addition, BPA0.5 altered the FA composition in male offspring, e.g. by decreasing levels of the essential polyunsaturated FA linoleic acid (18:2n-6) in iWAT-and liver-TG. No differences were observed regarding the studied FAs in 52-wk-old offspring, although a slightly increased BW was observed in 52-wk-old female offspring. Conclusions: Low-dose developmental BPA exposure increased SCD-16 in iWAT-TG and SCD-18 in PL-CE of male offspring, which may reflect higher SCD-1 activity in these tissues. Altered desaturation activity and signs of altered FA composition are novel findings that may indicate insulin resistance in the rat offspring. These aforementioned results, together with the observed increased BW, adds to previously published data demonstrating that BPA can act as a metabolism disrupting chemical.
  •  
3.
  • Dunder, Linda, et al. (författare)
  • Urinary bisphenol A and serum lipids : a meta-analysis of six NHANES examination cycles (2003-2014)
  • 2019
  • Ingår i: Journal of Epidemiology and Community Health. - : BMJ PUBLISHING GROUP. - 0143-005X .- 1470-2738. ; 73:11, s. 1012-1019
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mounting evidence from both experimental and epidemiological studies suggest that exposure to the endocrine disruptor bisphenol A (BPA) has a role in metabolic disorders. The aim of the present study was to assess whether urinary BPA concentrations were associated with dyslipidaemia in children (<= 17 years old) and adults (>= 18 years old) by performing a meta-analysis of data from six cycles (2003-2014) in the National Health and Nutrition Examination Survey (NHANES).Methods: We conducted a meta-analysis of data from 4604 children and 10 989 adult participants who were part of a substudy of urinary BPA measurements from six NHANES cycles from 2003 to 2014. Linear regression models conducted in each cycle were used to perform a meta-analysis to investigate associations between urinary BPA and serum levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), triglycerides (TG) and apolipoprotein B (ApoB).Results: The meta-analysis did not disclose any significant associations between urinary BPA concentrations and LDL-C, HDL-C, TC, TG and ApoB in children. In adults, the meta-analysis revealed negative regression coefficients for all five lipid variables. However, no associations were significant following Bonferroni correction for multiple tests.Conclusions: In the present meta-analysis of cross-sectional data from NHANES, no associations were found between urinary BPA and the five different lipid variables when investigated in both children and adults. However, considering the cross-sectional nature of the present study, results should be clarified in carefully designed longitudinal cohort studies with repeated BPA measurements.
  •  
4.
  •  
5.
  • Halin Lejonklou, Margareta, 1966- (författare)
  • The MEN 1 Pancreas : Tumor Development and Haploinsufficiency
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Multiple Endocrine Neoplasia Type I Syndrome (MEN 1) is a monogenic autosomal dominantly inherited cancer syndrome caused by a heterozygous loss of the MEN1 gene, predisposing for endocrine cell proliferation and tumor formation. MEN 1 carriers classically develop tumors in endocrine organs; the parathyroids, the endocrine pancreas, and the pituitary. Other organs, endocrine and non-endocrine, may also be affected. The most common cause of death in MEN 1 is pancreatic endocrine tumor (PNET), which exhibit inactivation of both MEN1 alleles. The increased proliferation prior to loss of the wild-type allele indicates haploinsufficiency, and little is known concerning the mechanisms behind MEN 1 PNET development. The MEN1 protein, menin, lacking homology with other known proteins, is involved in several aspects of transcriptional regulation and chromatin organization.We report differential expression and subcellular localization of transcription factors important in pancreatic development, in human and mouse MEN 1 pancreas, compared to non-MEN 1 pancreas. A predominantly cytoplasmic localization of Neurogenin3 and NeuroD1 was observed in tumors as well as in MEN 1 non-tumorous pancreas.Notch signaling factor expression and localization were examined in the pancreas of a heterozygous Men1 mouse model, and compared with that of wild-type littermates. Nuclear Hes1 was lost in tumors, concomitant to weaker Notch1 NICD expression, and further, analyzed using qPCR, it was shown that Notch1 was less expressed in heterozygous islets compared to wild-type islets.Performing a global gene expression array, we identified differential gene expression in five-week-old heterozygous Men1 mouse islets, compared to islets from wild-type littermates. The array results for a subset of the differentially regulated genes were corroborated using qPCR, western blotting and in situ PLA. We additionally observed significantly accelerated proliferation in islets from young heterozygous animals.It is often problematic to determine prognosis for individual patients with PNET. This is especially true in the group of patients with well differentiated endocrine carcinomas. In the absence of metastases, morphological signs of malignancy are frequently lacking. We evaluated the expression of nuclear and cytoplasmic survivin in a clinically characterized patient material (n=111), and a high nuclear survivin expression proved to be a significant negative prognostic factor for survival.
  •  
6.
  • Lejonklou, Margareta Halin, 1966-, et al. (författare)
  • Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring.
  • 2017
  • Ingår i: Journal of Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 125:6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive.OBJECTIVES: The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring.METHODS: Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to (BPA0.5; ) or (BPA50; ), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring.RESULTS: Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels ( compared with , females BPA50 ; compared with , males BPA0.5 ) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls ( number of adipocytes/HPF compared with number of adipocytes/HPF; ) and by 123% in BPA0.5 females compared with BPA50 animals ( number of adipocytes/high power field (HPF) compared with number of adipocytes/HPF; ). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals ( number of adipocytes/HPF compared with number of adipocytes/HPF; ). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed animals and controls depending on the tissue, dose, and sex.CONCLUSIONS: Developmental exposure to of BPA, which is 8-10 times lower than the current preliminary EFSA (European Food Safety Authority) tolerable daily intake (TDI) of and is within the range of environmentally relevant levels, was associated with sex-specific differences in the expression of genes in adipose tissue plasma triglyceride levels in males and adipocyte cell density in females when F344 rat offspring of dams exposed to BPA at were compared with the offspring of unexposed controls.
  •  
7.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Developmental low-dose exposure to bisphenol A induces chronic inflammation, bone marrow fibrosis and reduces bone stiffness in female rat offspring only
  • 2019
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 177
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Developmental exposure to low doses of the endocrine disruptor bisphenol A (BPA) is known to alter bone tissue in young rodents, although how bone tissue is affected in aged animals is not well known. We have recently shown that low-dose developmental exposure to BPA increases procollagen type I N-terminal propeptide (P1NP) levels, a peptide formed during type 1 collagen synthesis, in plasma of 5-week-old female rat offspring while male offspring showed reduced bone size.Objective: To analyze offspring bone phenotype at 52 weeks of age and clarify whether the BPA-induced increase in P1NP levels at 5 weeks is an early sign of bone marrow fibrosis development.Methods: As in our 5-week study, pregnant Fischer 344 rats were exposed to BPA via drinking water corresponding to 0.5 mu g/kg BW/day (BPA0.5), which is in the range of human daily exposure, or 50 mu g/kg BW/day (BPA50) from gestational day 3.5 until postnatal day 22. Controls were given only vehicle. The offspring were sacrificed at 52 weeks of age. Bone effects were analyzed using peripheral quantitative and micro-computed tomography (microCT), 3-point bending test, plasma markers and histological examination.Results: Compared to a smaller bone size at 5 weeks, at the age of 52 weeks, femur size in male offspring had been normalized in developmentally BPA-exposed rats. The 52-week-old female offspring showed, like the 5-week-old siblings, higher plasma P1NP levels compared to controls but no general increasing bone growth or strength. However, 2 out of 14 BPA-exposed female offspring bones developed extremely thick cortices later in life, discovered by systematic in vivo microCT scanning during the study. This was not observed in male offspring or in female controls. Biomechanical testing revealed that both doses of developmental BPA exposure reduced femur stiffness only in female offspring. In addition, histological analysis showed an increased number of fibrotic lesions only in the bone man ow of female rat offspring developmentally exposed to BPA. In line with this, plasma markers of inflammation, Tnf (in BPA0.5) and Timpl (in BPA50) were increased exclusively in female offspring.Conclusions: Developmental BPA exposure at an environmentally relevant concentration resulted in female specific effects on bone as well as on plasma biomarkers of collagen synthesis and inflammation. Even a dose approximately eight times lower than the current temporary EFSA human tolerable daily intake of 4 mu g/kg BW/day, appeared to induce bone stiffness reduction, bone man ow fibrosis and chronic inflammation in female rat offspring later in life.
  •  
8.
  • Lind, Thomas, et al. (författare)
  • Low-dose developmental exposure to bisphenol A induces sex-specific effects in bone of Fischer 344 rat offspring
  • 2017
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 159, s. 61-68
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Bisphenol A (BPA) is a component of polycarbonate plastics to which humans are regularly exposed at low levels, and an endocrine disruptor with effects on several hormonal systems. Bone is a sensitive hormone target tissue, and we have recently shown that in utero and lactational exposure to 25µg BPA/kg BW/day alters femoral geometry in rat offspring.OBJECTIVE: To investigate bone effects in rat offspring after developmental exposure to a BPA dose in the range of human daily exposure (0.1-1.5µg/kg BW/day) as well as a dose to corroborate previous findings.METHODS: Pregnant Fischer 344 rats were exposed to BPA via drinking water corresponding to 0.5µg/kg BW/day: [0.5], (n=21) or 50µg/kg BW/day: [50], (n = 16) from gestational day 3.5 until postnatal day 22, while controls were given only vehicle (n = 25). The offspring was sacrificed at 5 weeks of age. Bone effects were analyzed using peripheral quantitative computed tomography (pQCT), the 3-point bending test, plasma markers of bone turnover, and gene expression in cortical bone and bone marrow.RESULTS: Compared to controls, male offspring developmentally exposed to BPA had shorter femurs. pQCT analysis revealed effects in the [0.5] group, but not in the [50] group; BPA reduced both trabecular area (-3.9%, p < 0.01) and total cross sectional area (-4.1%, p < 0.01) of femurs in the [0.5] group, whereas no effects were seen on bone density. Conversely, bone length and size were not affected in female offspring. However, the procollagen type I N-terminal propeptide (P1NP), a peptide formed during type 1 collagen synthesis, was increased in plasma (42%: p < 0.01) in female offspring exposed to [0.5] of BPA, although collagen gene expression was not increased in bone. The biomechanical properties of the bones were not altered in either sex. Bone marrow mRNA expression was only affected in male offspring.CONCLUSIONS: Developmental low-dose exposure to BPA resulted in sex-specific bone effects in rat offspring. A dose approximately eight times lower than the current temporary EFSA human tolerable daily intake of 4µg/kg BW/day, reduced bone length and size in male rat offspring. Long-term studies are needed to clarify whether the increased plasma levels of P1NP in female offspring reflect development of fibrosis.
  •  
9.
  • Manukyan, Levon, et al. (författare)
  • Developmental exposure to a very low dose of bisphenol A induces persistent islet insulin hypersecretion in Fischer 344 rat offspring
  • 2019
  • Ingår i: Environmental Research. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0013-9351 .- 1096-0953. ; 172, s. 127-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In children with obesity, accentuated insulin secretion has been coupled with development of type 2 diabetes mellitus (T2DM). Bisphenol A (BPA) is a chemical with endocrine- and metabolism-disrupting properties which can be measured in a majority of the population. Exposure to BPA has been associated with the development of metabolic diseases including T2DM.Objective: The aim of this study was to investigate if exposure early in life to an environmentally relevant low dose of BPA causes insulin hypersecretion in rat offspring.Methods: Pregnant Fischer 344 rats were exposed to 0.5 (BPA0.5) or 50 (BPA50) jig BPA/kg BW/day via drinking water from gestational day 3.5 until postnatal day 22. Pancreata from dams and 5- and 52-week-old offspring were procured and islets were isolated by collagenase digestion. Glucose-stimulated insulin secretion and insulin content in the islets were determined by ELISA.Results: Basal (5.5 mM glucose) islet insulin secretion was not affected by BPA exposure. However, stimulated (11 mM glucose) insulin secretion was enhanced by about 50% in islets isolated from BPA0.5-exposed 5- and 52 week-old female and male offspring and by 80% in islets from dams, compared with control. In contrast, the higher dose, BPA50, reduced stimulated insulin secretion by 40% in both 5- and 52-week-old female and male offspring and dams, compared with control.Conclusion: A BPA intake 8 times lower than the European Food Safety Authority's (EFSA's) current tolerable daily intake (TDI) of 4 mu g/kg BW/day of BPA delivered via drinking water during gestation and early development causes islet insulin hypersecretion in rat offspring up to one year after exposure. The effects of BPA exposure on the endocrine pancreas may promote the development of metabolic disease including T2DM.
  •  
10.
  • Spörndly-Nees, Ellinor, et al. (författare)
  • Low-dose exposure to Bisphenol A during development has limited effects on male reproduction in midpubertal and aging Fischer 344 rats.
  • 2018
  • Ingår i: Reproductive Toxicology. - : Elsevier BV. - 0890-6238 .- 1873-1708. ; 81, s. 196-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Low doses of Bisphenol A (BPA) during development may affect reproduction. In this study, Fischer 344 rats were exposed to 0.5 or 50 μg BPA/kg bw/day via drinking water from gestational day 3.5 to postnatal day 22. Anogenital distance, organ weight, histopathology of reproductive organs, hormone analysis and sperm morphology were evaluated in male offspring. In this study no major effects of BPA on male reproduction in midpubertal (postnatal day 35) or adult (12-month-old) rats were revealed, apart from a higher prevalence of mild inflammatory cell infiltrate in cauda epididymis in adult rats exposed to 50 μg BPA/kg bw/day. No BPA-related effects on sexual development were seen but care should be taken when evaluating histopathology in midpuberty testis due to large morphological variation. Results from the present study show no major signs of altered male reproduction in rats exposed to low doses of BPA during gestation and lactation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy