SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lelliott Christopher) "

Sökning: WFRF:(Lelliott Christopher)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gurung, Iman S., et al. (författare)
  • Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia
  • 2011
  • Ingår i: Cardiovascular Research. - : Oxford University Press. - 0008-6363 .- 1755-3245. ; 92:1, s. 29-38
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β(-/-) hearts potentially associated with increased arrhythmic risk in metabolic diseases.METHODS AND RESULTS: Microarray analysis in mouse PGC1β(-/-) hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β(-/-) mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β(-/-) hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β(-/-) ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca(2+) transients, whose amplitude and frequency were increased by isoprenaline, and Ca(2+) currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K(+) currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca(2+)-calmodulin dependent protein kinase II expression.CONCLUSION: PGC1β(-/-) hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca(2+) homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
  •  
2.
  • Bjursell, Mikael, 1977, et al. (författare)
  • Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice
  • 2008
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 294:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3–5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T3 levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21–23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.
  •  
3.
  • Carobbio, Stefania, et al. (författare)
  • Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity
  • 2013
  • Ingår i: Diabetes. - : Cell Press. - 0012-1797 .- 1939-327X. ; 62:11, s. 3697-3708
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
  •  
4.
  • Lelliott, Christopher J., et al. (författare)
  • Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
  • 2006
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta) has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
  •  
5.
  •  
6.
  • López, Miguel, et al. (författare)
  • Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
  • 2010
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 16:9, s. 1001-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
  •  
7.
  • Medina-Gomez, Gema, et al. (författare)
  • The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:6, s. 1706-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is critically required for adipogenesis. PPARgamma exists as two isoforms, gamma1 and gamma2. PPARgamma2 is the more potent adipogenic isoform in vitro and is normally restricted to adipose tissues, where it is regulated more by nutritional state than PPARgamma1. To elucidate the relevance of the PPARgamma2 in vivo, we generated a mouse model in which the PPARgamma2 isoform was specifically disrupted. Despite similar weight, body composition, food intake, energy expenditure, and adipose tissue morphology, male mice lacking the gamma2 isoform were more insulin resistant than wild-type animals when fed a regular diet. These results indicate that insulin resistance associated with ablation of PPARgamma2 is not the result of lipodystrophy and suggests a specific role for PPARgamma2 in maintaining insulin sensitivity independently of its effects on adipogenesis. Furthermore, PPARgamma2 knockout mice fed a high-fat diet did not become more insulin resistant than those on a normal diet, despite a marked increase in their mean adipocyte cell size. These findings suggest that PPARgamma2 is required for the maintenance of normal insulin sensitivity in mice but also raises the intriguing notion that PPARgamma2 may be necessary for the adverse effects of a high-fat diet on carbohydrate metabolism.
  •  
8.
  • Morris, John A, et al. (författare)
  • An atlas of genetic influences on osteoporosis in humans and mice.
  • 2019
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 51, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR)=58, P=1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P<0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy