SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lellouch Emmanuel) "

Sökning: WFRF:(Lellouch Emmanuel)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davidsson, Bjorn J. R., et al. (författare)
  • CO2-driven surface changes in the Hapi region on Comet 67P/Churyumov-Gerasimenko
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 516:4, s. 6009-6040
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 2014 December 31 and 2015 March 17, the OSIRIS cameras on Rosetta documented the growth of a 140 -m wide and 0.5 -m deep depression in the Hapi region on Comet 67P/Churyumov-Gerasimenko. This shallow pit is one of several that later formed elsewhere on the comet, all in smooth terrain that primarily is the result of airfall of coma particles. We have compiled observations of this region in Hapi by the microwave instrument MIRO on Rosetta, acquired during October and November 2014. We use thermophysical and radiative transfer models in order to reproduce the MIRO observations. This allows us to place constraints on the thermal inertia, diffusivity, chemical composition, stratification, extinction coefficients, and scattering properties of the surface material, and how they evolved during the months prior to pit formation. The results are placed in context through long-term comet nucleus evolution modelling. We propose that (1) MIRO observes signatures that are consistent with a solid-state greenhouse effect in airfall material; (2) CO2 ice is sufficiently close to the surface to have a measurable effect on MIRO antenna temperatures, and likely is responsible for the pit formation in Hapi observed by OSIRIS; (3) the pressure at the CO2 sublimation front is sufficiently strong to expel dust and water ice outwards, and to compress comet material inwards, thereby causing the near-surface compaction observed by CONSERT, SESAME, and groundbased radar, manifested as the 'consolidated terrain' texture observed by OSIRIS.
  •  
2.
  • de Pater, Imke, et al. (författare)
  • An Energetic Eruption With Associated SO 1.707 Micron Emissions at Io's Kanehekili Fluctus and a Brightening Event at Loki Patera Observed by JWST
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed Io with the James Webb Space Telescope (JWST) while the satellite was in eclipse, and detected thermal emission from several volcanoes. The data were taken as part of our JWST-ERS program #1373 on 15 November 2022. Kanehekili Fluctus was exceptionally bright, and Loki Patera had most likely entered a new brightening phase. Spectra were taken with NIRSpec/IFU at a resolving power R ≈ 2,700 between 1.65 and 5.3 µm. The spectra were matched by a combination of blackbody curves that showed that the highest temperature, ∼1,200 K, for Kanehekili Fluctus originated from an area ∼0.25 km2 in size, and for Loki Patera this high temperature was confined to an area of ∼0.06 km2. Lower temperatures, down to 300 K, cover areas of ∼2,000 km2 for Kanehekili Fluctus, and ∼5,000 km2 for Loki Patera. We further detected the a1Δ ⇒ X3Σ− 1.707 µm rovibronic forbidden SO emission band complex over the southern hemisphere, which peaked at the location of Kanehekili Fluctus. This is the first time this emission has been seen above an active volcano, and suggests that the origin of such emissions is ejection of SO molecules directly from the vent in an excited state, after having been equilibrated at temperatures of ∼1,500 K below the surface, as was previously hypothesized.
  •  
3.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
4.
  • Gulkis, Samuel, et al. (författare)
  • Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s(-1) in early June 2014 to 1.2 kg s(-1) in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the "neck" region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (similar to 10 to 50 J K-1 m(-2) s(-0.5)), consistent with a thermally insulating powdered surface, is inferred.
  •  
5.
  • Moullet, Arielle, et al. (författare)
  • Distribution of alkali gases in Io's atmosphere
  • 2015
  • Ingår i: American Astronomical Society, Division of Planetary Sciences Meeting 47. ; 47, s. 311.31-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Thanks to high-sensitivity (sub)millimeter spectroscopic observations, KCl and NaCl in gas phase have been detected at low concentration levels in Io's atmosphere. These molecules are likely to be the main potassium and sodium carriers from the moon to its environment. Indeed, potassium and sodium are known to be present in Io's neutral clouds and plasma torus, which are believed to be fed from the moon itself.The immediate sources of gaseous NaCl and KCl in Io's atmosphere are still unknown. Based on thermochemical arguments, both molecules could be present in volcanic plumes. Their lifetime in gaseous form is predicted to be rather low (a few hours), and a large portion of the emitted gas should quickly condense on the ground. Sputtering of surface condensates by high-energy particles may re-inject some of the condensates back in the atmosphere. The efficiency of this process is highly dependant on the local atmospheric column density.We present maps of NaCl and KCl emission distribution, obtained in 2012 and 2015 with the Atacama Large Millimter Array (ALMA). The distribution maps will be compared to the distribution of volcanic centers and Io's bulk atmosphere (SO2), in an attempt to characterize their immediate sources.
  •  
6.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
7.
  • Roth, Lorenz, et al. (författare)
  • An attempt to detect transient changes in Io's SO2 and NaCl atmosphere
  • 2020
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 350
  • Tidskriftsartikel (refereegranskat)abstract
    • Io's atmosphere is predominately SO2 that is sustained by a combination of volcanic outgassing and sublimation. The loss from the atmosphere is the main mass source for Jupiter's large magnetosphere. Numerous previous studies attributed various transient phenomena in Io's environment and Jupiter's magnetosphere to a sudden change in the mass loss from the atmosphere supposedly triggered by a change in volcanic activity. Since the gas in volcanic plumes does not escape directly, such causal correlation would require a transient volcano-induced change in atmospheric abundance, which has never been observed so far. Here we report four observations of atmospheric SO2 and NaCl from the same hemisphere of Io, obtained with the IRAM NOEMA interferometer on 11 December 2016, 14 March, 6 and 29 April 2017. These observations are compared to measurements of volcanic hot spots and Io's neutral and plasma environment. We find a stable NaCl column density in Io's atmosphere on the four dates. The SO2 column density derived for December 2016 is about 30% lower compared to the SO2 column density found in the period of March to April 2017. This increase in SO2 from December 2016 to March 2017 might be related to increasing volcanic activity observed at several sites in spring 2017, but the stability of the volcanic trace gas NaCl and resulting decrease in NaCl/SO2 ratio do not support this interpretation. Observed dimmings in both the sulfur ion torus and Na neutral cloud suggest rather a decrease in mass loading in the period of increasing SO2 abundance. The dimming Na brightness and stable atmospheric NaCl furthermore dispute an earlier suggested positive correlation of the sodium cloud and the hot spot activity at Loki Patara, which considerably increased in this period. The environment of Io overall appears to be in a rather quiescent state, preventing further conclusions. Only Jupiter's aurora morphology underwent several short-term changes, which are apparently unrelated to Io's quiescent environment or the relatively stable atmosphere.
  •  
8.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Galand, Marina (3)
Schloerb, F. Peter (2)
Roth, Lorenz (2)
Retherford, Kurt D. (2)
Saur, Joachim (2)
Fletcher, Leigh N. (2)
visa fler...
Vinatier, Sandrine (2)
Viti, Serena (1)
Black, John H, 1949 (1)
Gaulme, Patrick (1)
Gonzalez Hernandez, ... (1)
Sanz-Forcada, Jorge (1)
Ribas, Ignasi (1)
Pantin, Eric (1)
Santolik, Ondrej (1)
Rickman, Hans (1)
Barabash, Stas (1)
Mousis, Olivier (1)
Tsuchiya, Fuminori (1)
Guedel, Manuel (1)
Palle, Enric (1)
Thomas, Nicolas (1)
Henning, Thomas (1)
Moro-Martin, Amaya (1)
Gurwell, Mark (1)
Janssen, Michael (1)
Leto, Giuseppe (1)
Schilke, Peter (1)
Tennyson, Jonathan (1)
Ivchenko, Nickolay, ... (1)
Allen, Mark (1)
Geppert, Wolf D. (1)
Hadid, Lina Z (1)
Wahlund, Jan-Erik (1)
Agnor, Craig B. (1)
Hofstadter, Mark D. (1)
Langevin, Yves (1)
Tobie, Gabriel (1)
Dougherty, Michele K ... (1)
Melin, Henrik (1)
Miller, Steve (1)
Mueller-Wodarg, Ingo (1)
de Pater, Imke (1)
Sanchez-Lavega, Agus ... (1)
Turtle, Elizabeth P. (1)
Montes, David (1)
Decin, Leen (1)
Bouwman, Jeroen (1)
Krause, Oliver (1)
Waldmann, Ingo (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Kungliga Tekniska Högskolan (2)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy