SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lengfellner Kathrin) "

Sökning: WFRF:(Lengfellner Kathrin)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lewandowska, Aleksandra M., et al. (författare)
  • Temperature effects on phytoplankton diversity - The zooplankton link
  • 2014
  • Ingår i: Journal of Sea Research. - : Elsevier. - 1385-1101 .- 1873-1414. ; 85, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.
  •  
2.
  • Sommer, Ulrich, et al. (författare)
  • Experimental induction of a coastal spring bloom early in the year by intermittent high-light episodes
  • 2012
  • Ingår i: Marine Ecology Progress Series. - Oldendorf Luhe : Inter-Research. - 0171-8630 .- 1616-1599. ; 446, s. 61-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Through the use of mesocosm experiments, we show that an unusually early spring pbytoplankton bloom can be induced by intermittent high-light periods. We performed mesocosm experiments where plankton assemblages from Kiel Bight (Western Baltic Sea) received a light regime based on the natural seasonal irradiance dimmed to 43% of surface irradiance of cloudless days, starting with irradiance levels of mid-January (6 mesocosms) and mid-February (6 mesocosms). After 6 d, half of the mesocosms received a ca. 2-fold increase in irradiance. In the January mesocosms, a phytoplankton bloom developed only in the treatments with the high-light episode, whereas in the February mesocosms a phytoplankton bloom also developed in the controls. Phytoplankton net growth rates, production:biomass ratios and biomass at the end of the high irradiance episodes were positively correlated to the daily light dose. The relative biomass of diatoms increased with increasing light, whereas the relative biomass of cryptophytes decreased. A bottom-up transmission to mesozooplankton (mainly copepods of the genera Acartia and Oithona) was evident by increased densities of copepod nauplii and egg production under higher light conditions, whereas copepodids and adults showed no responses during the experimental period. The taxonomic composition of the nauplii was shifted to the advantage of Acartia/Centropages (not distinguished at the naupliar stage) under higher light conditions.
  •  
3.
  • Sommer, Ulrich, et al. (författare)
  • The Baltic Sea spring phytoplankton bloom in a changing climate : an experimental approach
  • 2012
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 159:11, s. 2479-2490
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6A degrees C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32-202 Wh m(-2) at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28A degrees C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.
  •  
4.
  • Uszko, Wojciech, 1985-, et al. (författare)
  • When is a type III functional response stabilizing? : theory and practice of predicting plankton dynamics under enrichment
  • 2015
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 96:12, s. 3243-3256
  • Tidskriftsartikel (refereegranskat)abstract
    • The curvature of generalized Holling type functional response curves is controlled by a shape parameter b yielding hyperbolic type II (b = 1) to increasingly sigmoid type III (b > 1) responses. Empirical estimates of b vary considerably across taxa. Larger consumer-resource body mass ratios have been suggested to generate more pronounced type III responses and therefore to promote dynamic stability. The dependence of consumer-resource stability on b has, however, not been systematically explored, and the accurate empirical determination of b is challenging. Specifically, the shape of the functional response of the pelagic grazer Daphnia feeding on phytoplankton, and its consequences for stability, remain controversial. We derive a novel analytical condition relating b to local stability of consumer-resource interactions and use it to predict stability of empirically parameterized models of Daphnia and phytoplankton under enrichment. Functional response parameters were experimentally derived for two species of Daphnia feeding separately on single cultures of two different phytoplankton species. All experimentally studied Daphnia-algae systems exhibited type III responses. Parameterized type III responses are predicted to stabilize the modeled Daphnia-phytoplankton dynamics in some species pairs but not in others. Remarkably, stability predictions differ depending on whether functional response parameters are derived from clearance vs. ingestion rates. Accurate parameter estimation may therefore require fitting to both rates. In addition, our estimates of b for filter-feeding Daphnia are much smaller than predicted for actively hunting predators at similar consumer-resource body mass ratios. This suggests that the relationship between functional response shape and body mass ratios may vary with predation mode.
  •  
5.
  • Winder, Monika, et al. (författare)
  • Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions
  • 2012
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 159:11, s. 2491-2501
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced the bloom timing of most functional plankton groups in both marine and freshwater systems. In contrast to timing, responses of bloom magnitudes were more variable among taxa and systems and were influenced by light intensity and trophic interactions. Increased light levels increased the magnitude of the spring peaks of most phytoplankton taxa and of total phytoplankton biomass. Intensified size-selective grazing of copepods in warming scenarios affected phytoplankton size structure and lowered intermediate (20-200 mu m)-sized phytoplankton in marine systems. In contrast, plankton peak magnitudes in freshwater systems were unaffected by temperature, but decreased at lower light intensities, suggesting that filter feeding daphnids are sensitive to changes in algal carrying capacity as mediated by light supply. Our analysis confirms the general shift toward earlier blooms at increased temperature in both marine and freshwater systems and supports predictions that effects of climate change on plankton production will vary among sites, depending on resource limitation and species composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy