SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lenton Samuel) "

Sökning: WFRF:(Lenton Samuel)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cragnell, Carolina, et al. (författare)
  • Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered ProteinS Is Regulated through Zinc-Histidine Interactions
  • 2019
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDPs) can form functional oligomers and in some cases, insoluble disease related aggregates. It is therefore vital to understand processes and mechanisms that control pathway distribution. Divalent cations including Zn2+ can initiate IDP oligomerisation through the interaction with histidine residues but the mechanisms of doing so are far from understood. Here we apply a multi-disciplinary approach using small angle X-ray scattering, nuclear magnetic resonance spectroscopy, calorimetry and computations to show that that saliva protein Histatin 5 forms highly dynamic oligomers in the presence of Zn2+. The process is critically dependent upon interaction between Zn2+ ions and distinct histidine rich binding motifs which allows for thermodynamic switching between states. We propose a molecular mechanism of oligomerisation, which may be generally applicable to other histidine rich IDPs. Finally, as Histatin 5 is an important saliva component, we suggest that Zn2+ induced oligomerisation may be crucial for maintaining saliva homeostasis.
  •  
2.
  • Fagerberg, Eric, et al. (författare)
  • Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions against SAXS
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:12, s. 6968-6983
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDPs) adopt heterogeneous conformational ensembles in solution. The properties of the conformational ensemble are dependent upon the solution conditions, including the presence of ions, temperature, and crowding, and often directly impact biological function. Many in vitro investigations focus on the properties of IDPs under dilute conditions, rather than the crowded environment found in vivo. Due to their heterogeneous nature, the study of IDPs under crowded conditions is challenging both experimentally and computationally. Despite this, such studies are worth pursuing due to the insight gained into biologically relevant phenomena. Here, we study the highly charged IDP Histatin 5 under self-crowded conditions in low and high salt conditions. A combination of small-angle X-ray scattering and different simulation models, spanning a range of computational complexity and detail, is used. Most models are found to have limited application when compared to results from experiments. The best performing model is the highly coarse-grained, bead-necklace model. This model shows that Histatin 5 has a conserved radius of gyration and a decreasing flexibility with increasing protein concentration. Due to its computational efficiency, we propose that it is a suitable model to study crowded IDP solutions, despite its simplicity.
  •  
3.
  • Fagerberg, Eric, et al. (författare)
  • Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon : A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207.
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDPs) are proteins that, in comparison with globular/structured proteins, lack a distinct tertiary structure. Here, we use the model IDP, Histatin 5, for studying its dynamical properties under self-crowding conditions with quasi-elastic neutron scattering in combination with full atomistic molecular dynamics (MD) simulations. The aim is to determine the effects of crowding on the center-of-mass diffusion as well as the internal diffusive behavior. The diffusion was found to decrease significantly, which we hypothesize can be attributed to some degree of aggregation at higher protein concentrations, (≥100 mg/mL), as indicated by recent small-angle X-ray scattering studies. Temperature effects are also considered and found to, largely, follow Stokes-Einstein behavior. Simple geometric considerations fail to accurately predict the rates of diffusion, while simulations show semiquantitative agreement with experiments, dependent on assumptions of the ratio between translational and rotational diffusion. A scaling law that previously was found to successfully describe the behavior of globular proteins was found to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations show that the width of the distribution with respect to diffusion is not a simplistic mirroring of the distribution of radius of gyration, hence, displaying the particular features of IDPs that need to be accounted for.
  •  
4.
  • Fagerberg, Eric, et al. (författare)
  • The Effects of Chain Length on the Structural Properties of Intrinsically Disordered Proteins in Concentrated Solutions
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 124:52, s. 11843-11853
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDP) are proteins that sample a heterogeneous ensemble of conformers in solution. An estimated 25-30% of all eukaryotic proteins belong to this class. In vivo, IDPs function under conditions that are highly crowded by other biological macromolecules. Previous research has highlighted that the presence of crowding agents can influence the conformational ensemble sampled by IDPs, resulting in either compaction or expansion. The effects of self-crowding of the disordered protein Histatin 5 has, in an earlier study, been found to have limited influence on the conformational ensemble. In this study, it is examined whether the short chain length of Histatin 5 can explain the limited effects of crowding observed, by introducing (Histatin 5)2, a tandem repeat of Histatin 5. By utilizing small-angle X-ray scattering, it is shown that the conformational ensemble is conserved at high protein concentrations, in resemblance with Histatin 5, although with a lowered protein concentration at which aggregation arises. Under dilute conditions, atomistic molecular dynamics and coarse-grained Monte Carlo simulations, as well as an established scaling law, predicted more extended conformations than indicated by experimental data, hence implying that (Histatin 5)2 does not behave as a self-avoiding random walk.
  •  
5.
  • Gulotta, Alessandro, et al. (författare)
  • Combining Scattering Experiments and Colloid Theory to Characterize Charge Effects in Concentrated Antibody Solutions
  • Ingår i: Molecular Pharmaceutics. - 1543-8384.
  • Tidskriftsartikel (refereegranskat)abstract
    • Charges and their contribution to protein-protein interactions are essential for the key structural and dynamic properties of monoclonal antibody (mAb) solutions. In fact, they influence the apparent molecular weight, the static structure factor, the collective diffusion coefficient, or the relative viscosity, and their concentration dependence. Further, charges play an important role in the colloidal stability of mAbs. There exist standard experimental tools to characterize mAb net charges, such as the measurement of the electrophoretic mobility, the second virial coefficient, or the diffusion interaction parameter. However, the resulting values are difficult to directly relate to the actual overall net charge of the antibody and to theoretical predictions based on its known molecular structure. Here, we report the results of a systematic investigation of the solution properties of a charged IgG1 mAb as a function of concentration and ionic strength using a combination of electrophoretic measurements, static and dynamic light scattering, small-angle X-ray scattering, and tracer particle-based microrheology. We analyze and interpret the experimental results using established colloid theory and coarse-grained computer simulations. We discuss the potential and limits of colloidal models for the description of the interaction effects of charged mAbs, in particular pointing out the importance of incorporating shape and charge anisotropy when attempting to predict structural and dynamic solution properties at high concentrations.
  •  
6.
  • Holt, Carl, et al. (författare)
  • Mineralisation of soft and hard tissues and the stability of biofluids.
  • 2014
  • Ingår i: Journal of Structural Biology. - : Elsevier BV. - 1095-8657 .- 1047-8477. ; 185:3, s. 383-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence is provided from studies on natural and artificial biofluids that the sequestration of amorphous calcium phosphate by peptides or proteins to form nanocluster complexes is of general importance in the control of physiological calcification. A naturally occurring mixture of osteopontin peptides was shown, by light and neutron scattering, to form calcium phosphate nanoclusters with a core-shell structure. In blood serum and stimulated saliva, an invariant calcium phosphate ion activity product was found which corresponds closely in form and magnitude to the ion activity product observed in solutions of these osteopontin nanoclusters. This suggests that types of nanocluster complexes are present in these biofluids as well as in milk. Precipitation of amorphous calcium phosphate from artificial blood serum, urine and saliva was determined as a function of pH and the concentration of osteopontin or casein phosphopeptides. The position of the boundary between stability and precipitation was found to agree quantitatively with the theory of nanocluster formation. Artificial biofluids were prepared that closely matched their natural counterparts in calcium and phosphate concentrations, pH, saturation, ionic strength and osmolality. Such fluids, stabilised by a low concentration of sequestering phosphopeptides, were found to be highly stable and may have a number of beneficial applications in medicine.
  •  
7.
  • Jansson, Maria, et al. (författare)
  • Intercalation of cationic peptides within Laponite layered clay minerals in aqueous suspensions : The effect of stoichiometry and charge distance matching
  • 2019
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797. ; 557, s. 767-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Clays can be synthesised to have specific functional properties, which have been exploited in a range of industrial processes. A key characteristic of clay is the presence of a negatively charged surface, surrounded by an oppositely charged rim. Because of that, clays are able to sequester cationic compounds resulting in the formation of ordered layered structures, known as tactoids. Recent research has highlighted the possibility of utilising clay as a drug delivery compound for cationic peptides. Here, we investigate the process of intercalation by using the highly cationic peptide deca-arginine, and the synthetic clay Laponite, in aqueous suspensions with 2.5 wt% Laponite, and varying peptide concentrations. Small-angle X-ray scattering experiments show that tactoids are formed as a function of deca-arginine concentration in the dispersion, and for an excess of peptide, i.e. above a matched charge-ratio between the peptide and clay, the growth of the tactoids is limited, resulting in tactoidal dissolution. Zeta-potential measurements confirm that the observed dissolution is caused by overcharging of the platelets. By employing coarse-grained molecular dynamics simulations based on the continuum model, we are able to predict the tactoid formation, the growth, and the dissolution, in agreement with experimental results. We propose that the present simulation method can be a useful tool to tune peptide and clay characteristics to optimise and determine the extent of intercalation by cationic peptides of therapeutic interest.
  •  
8.
  • Lenton, Samuel, et al. (författare)
  • A review of the biology of calcium phosphate sequestration with special reference to milk.
  • 2015
  • Ingår i: Dairy Science & Technology. - : Springer Science and Business Media LLC. - 1958-5586 .- 1958-5594. ; 95:1, s. 3-14
  • Forskningsöversikt (refereegranskat)abstract
    • In milk, a stable fluid is formed in which sequestered nanoclusters of calcium phosphate are substructures in casein micelles. As a result, calcium and phosphate concentrations in milk can be far in excess of their solubility. Variations of calcium, phosphate and casein concentrations in milks, both within and among species, are mainly due to the formation of the nanocluster complexes. Caseins evolved from tooth and bone proteins well before the evolution of lactation. It has therefore been suggested that the role of caseins in milk is an adaptation of an antecedent function in the control of some aspect of biomineralisation. There is new evidence that nanocluster-type complexes are also present in blood serum and, by implication, in many other closely related biofluids. Because such fluids are stable but nevertheless supersaturated with respect to the bone and tooth mineral hydroxyapatite, they allow soft and mineralised tissues to co-exist in the same organism with relative ease. An appreciable concentration of nanocluster complexes exists in fresh saliva. Such saliva may stabilise tooth mineral and help to repair demineralised lesions. In the extracellular matrix of bone, nanocluster complexes may be involved in directing the amorphous calcium phosphate to intrafibrillar spaces in collagen where they can mature into oriented apatite crystals. Thus, evidence is accumulating that calcium phosphate sequestration by phosphopeptides to form equilibrium complexes, first observed in milk, is more generally important in the control of physiological calcification.
  •  
9.
  • Lenton, Samuel, et al. (författare)
  • Effect of Phosphorylation on a Human-like Osteopontin Peptide
  • 2017
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495. ; 112:8, s. 1586-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.
  •  
10.
  • Lenton, Samuel, et al. (författare)
  • From dilute to concentrated solutions of intrinsically disordered proteins : Interpretation and analysis of collected data
  • 2023
  • Ingår i: Small Angle Scattering Part B: Methods for Structural Interpretation. - : Elsevier. - 0076-6879 .- 1557-7988. - 9780323991810 ; 678, s. 299-330
  • Bokkapitel (refereegranskat)abstract
    • Intrinsically disordered proteins (IDPs) have a broad energy landscape and consequently sample many different conformations in solution. The innate flexibility of IDPs is exploited in their biological function, and in many instances allows a single IDP to regulate a range of processes in vivo. Due to their highly flexible nature, characterizing the structural properties of IDPs is not straightforward. Often solution-based methods such as Nuclear Magnetic Resonance (NMR), Förster Resonance Energy Transfer (FRET), and Small-Angle X-ray Scattering (SAXS) are used. SAXS is indeed a powerful technique to study the structural and conformational properties of IDPs in solution, and from the obtained SAXS spectra, information about the average size, shape, and extent of oligomerization can be determined. In this chapter, we will introduce model-free methods that can be used to interpret SAXS data and introduce methods that can be used to interpret SAXS data beyond analytical models, for example, by using atomistic and different levels of coarse-grained models in combination with molecular dynamics (MD) and Monte Carlo simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy