SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leon Rodriguez Lizette) "

Sökning: WFRF:(Leon Rodriguez Lizette)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leon-Rodriguez, Lizette, et al. (författare)
  • Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean
  • 2010
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182 .- 1872-616X. ; 298, s. 409-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive amounts of 13C-depleted carbon rapidly entered the ocean more than once during the Early Paleogene, providing a geological framework for understanding future perturbations in carbon cycling, including ocean acidification. To assess the number of events and their impact on deep-sea carbonate accumulation, we investigated a 42 m thick unit of Upper Paleocene–Lower Eocene carbonate ooze, which was deposited on a subsiding flank of the East Pacific Rise. Age control was established using calcareous nannofossils and planktonic foraminifera, as well as stable carbon isotopes of bulk carbonate. Carbonate content, foraminiferal test fragmentation, and planktonic/benthic foraminiferal ratio were measured to ascertain changes in carbonate dissolution. Based on these analyses, carbonate preservation generally increased from the late Paleocene (55.4 Ma) through the early Eocene (51.4 Ma), after which it became poor to negligible. This trend was punctuated by three (and probably four) short-term intervals characterized by carbonate dissolution and negative δ13C excursions. These horizons almost assuredly correspond to the PETM (~55.5 Ma), H1/ETM-2 (~53.7 Ma), I1 (~53.2 Ma), and K/X (~52.5 Ma) events. Carbonate preservation also increased within 200 kyr after two and perhaps all four intervals. We suggest the lysocline and calcite compensation depth (CCD) generally deepened between 55.4 and 51.4 Ma but shoaled and subsequently overcompensated during and after three and likely four intervals of rapid and massive carbon injection. Oxygen isotope data further suggests these intervals were times of anomalous warmth. 
  •  
2.
  • Pälike, Heiko, et al. (författare)
  • A Cenozoic record of the equatorial Pacific carbonate compensation depth
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 488:7413, s. 609-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy