SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lepland A.) "

Sökning: WFRF:(Lepland A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panieri, G., et al. (författare)
  • Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps.
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 458, s. 203-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane is a potent greenhouse gas and some episodes of past global warming appear to coincide with its massive release from seafloor sediments as suggested by carbon isotope records of foraminifera. Here, we present structural, geochemical, and stable carbon isotope data from single foraminiferal calcite tests and authigenic Mg-calcite overgrowths in a sediment core recovered from an area of active methane seepage in western Svalbard at ca. 340 m water depth. The foraminifera are from intervals in the core where conventional bulk foraminiferal δ13C values are as low as −11.3 ‰. Mg/Ca analyses of the foraminiferal tests reveal that even tests for which there is no morphological evidence for secondary authigenic carbonate can contain Mg-rich interlayers with Mg/Ca up to 220 mmol/mol. Transmission electron microscopy (TEM) of the contact point between the biogenic calcite and authigenic Mg-calcite layers shows that the two phases are structurally indistinguishable and they have the same crystallographic orientation. Secondary ion mass spectrometry (SIMS) analyses reveal that the Mg-rich layers are strongly depleted δ13C (δ13C as low as −34.1 ‰). These very low δ13C values indicate that the authigenic Mg-calcite precipitated from pore waters containing methane-derived dissolved inorganic carbon at the depth of the sulfate–methane transition zone (SMTZ). As the depth of the SMTZ can be located several meters below the sediment-seawater interface, interpretation of low foraminiferal δ13C values in ancient sediments in terms of the history of methane seepage at the seafloor must be undertaken with care.
  •  
2.
  • Crémière, A., et al. (författare)
  • Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea
  • 2016
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 432, s. 16-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrated petrography, mineralogy, geochronology and geochemistry of cold seep carbonate crusts and free gas from the Alvheim channel elucidate diagenetic carbonate precipitation and related seepage histories in the central North Sea. Free gas isotope characteristics coupled with carbonate δ13C values as low as − 66‰ VPDB, indicate a predominantly microbial methane source with minor thermogenic contribution. We estimate that ~ 70% of the carbon sequestered into carbonate precipitates was derived from local oxidation of methane. The early stage of crust growth is represented by microcrystalline aragonite and Mg-calcite (10 to 40% mol MgCO3) cementing seafloor sediments consisting of clays, quartz, feldspar, and minor detrital low Mg-calcite and dolomite. Typical association of aragonite cement with coarse-grained detritus may reflect elevated fluid flow and flushing of fine particles prior to cementation close to the seafloor. Middle rare earth element enrichment in early generation microcrystalline cements containing framboidal pyrite indicates diagenetic precipitation within the zone of anaerobic methane oxidation contiguous to iron reduction. The later generation diagenetic phase corresponds to less abundant radial fibrous and botryoidal aragonite which lines cavities developed within the crusts. In contrast to early generation cements, late generation cavity infills have rare earth elements and Y patterns with small negative Ce anomalies similar to seawater, consistent with carbonate precipitation in a more open, seawater dominated system. Aragonite U–Th ages indicate carbonate precipitation between 6.09 and 3.46 kyr BP in the northern part of the channel, whereas in the southern part precipitation occurred between 1.94 and 0.81 kyr BP reflecting regional changes in fluid conduit position.
  •  
3.
  • Hong, Wei-Li, et al. (författare)
  • Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin
  • 2021
  • Ingår i: Marine and Petroleum Geology. - : Elsevier BV. - 0264-8172 .- 1873-4073. ; 127
  • Tidskriftsartikel (refereegranskat)abstract
    • Seafloor seepage sites along the Vestnesa Ridge off west-Svalbard have been, for decades, a natural laboratory for the studies of fluid flow and gas hydrate dynamics along passive continental margins. The lack of ground truth evidence for fluid composition and gas hydrate abundance deep in the sediment sequence however prohibits us from further assessing the current model of pockmark evolution from the region. A MARUM-MeBo 70 drilling cruise in 2016 aims to advance our understanding of the system by recovering sediments tens of meters below seafloor from two active pockmarks along Vestnesa Ridge. We report pore fluid composition data focusing on dissolved chloride, stable isotopes of water (delta O-18 and delta D), and the isotopic composition of dissolved boron (delta B-11). From one of the seepage sites, we detect a saline formation water with two layers where gas hydrates were recovered. This saline formation pore fluid is characterized by elevated chloride concentrations (up to 616 mM), high B/Cl ratios (9 x 10(-4) mol/mol), high delta O-18 and delta D isotopic signatures (+0.6 parts per thousand and +3.8 parts per thousand, respectively) and low 811B signatures (+35.0 parts per thousand), which collectively hint to a high temperature modification at great depths. Based on the dissolved chloride concentration profiles, we estimated up to 47% of pore space occupied by gas hydrate in the sediments shallower than 11.5 mbsf. The observation of bubble fabric in the recovered gas hydrates suggests formation during past periods of intensive gaseous methane seepage. The presence of these gas hydrates without associated positive anomalies in dissolved chloride concentrations however suggests that the decomposition of gas hydrate is as fast as its formation. Such a state of gas hydrates can be attributed to a relatively low methane supply transported by the saline formation water at present. Our findings based on pore fluid composition corroborate previous inferences along Vestnesa Ridge that fluids sustaining seepage have migrated from great depths and that the variable gaseous and aqueous phases through the gas hydrate stability zone control the distributions of authigenic carbonates and gas hydrates.
  •  
4.
  • van Zuilen, M. A., et al. (författare)
  • Sulfur isotope mass-independent fractionation in impact depositsof the 3.2 billion-year-old Mapepe Formation,Barberton Greenstone Belt, South Africa
  • 2014
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 142, s. 429-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical and experimental studies have shown that atmospheric SO2 isotopologue self-shielding effects in the 190–220 nmregion of the solar spectrum are the likely cause for mass independent fractionation of sulfur isotopes (S-MIF). The main productsof this photochemical reaction – SO3 and S0 – typically define a compositional array of ca. D33S/d34S = 0.06–0.14. This is atodds with the generally observed trend in Archean sulfides, which broadly defines an array of ca. D33S/d34S = 0.9. Various explanationshave been proposed, including a diminution of d34S caused by chemical and biogenic mass-dependent fractionation ofsulfur isotopes (S-MDF), mixing with photolytic products produced during felsic volcanic events, or partial blocking of the lowwavelengthpart of the spectrum due to the presence of reduced atmospheric gases or an organic haze. Early in Earth history largemeteorite impacts would have ejected dust and gas clouds into the atmosphere that shielded solar radiation and affected globalclimate. It is thus likely that at certain time intervals of high meteorite flux the atmosphere was significantly perturbed, having aneffect on atmospheric photochemistry and possibly leaving anomalous sulfur isotopic signatures in the rock record. Here wedescribe the sulfur isotopic signatures in sulfides of spherule beds S2, S3 and S4 of the Barberton Greenstone Belt, South Africa.In particular, in spherule bed S3 – and to a lesser extent S4 – a trend of ca. D33S/d34S = 0.23 is observed that closely follows theexpected trend for SO2-photolysis in the 190–220 nm spectral range. This suggests that an impact dust cloud (deposited as spherulebeds), which sampled the higher region of the atmosphere, specifically incorporated products of SO2 photolysis in the 190–220 nm range, and blocked photochemical reactions at higher wavelengths (250–330 nm band). By implication, the generallyobserved Archean trend appears to be the result of mixing of different MIF-S sources arising from a variety of photochemicalreactions that took place in the lower part of the atmosphere.
  •  
5.
  • Qu, Yuangao, et al. (författare)
  • Sample-scale carbon isotopic variability and diverse biomass in the Paleoproterozoic Zaonega Formation, Russia
  • 2018
  • Ingår i: Precambrian Research. - 0301-9268 .- 1872-7433. ; 315, s. 222-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The stratigraphic record of organic matter in the c. 1.97 Ga Zaonega Formation (ZF), Onega Basin, northwestern Russia, exhibits a distinct negative δ13C excursion (δ13Corg from −25 to −40‰ VPDB), which was previously interpreted either to reflect a disturbance in the global carbon cycle after the Great Oxidation Event, or to have been caused by an increase in basinal methanotrophic activity. In order to assess the nature of primary biomass and the effects of post-depositional alteration, we here report the sample-scale carbon isotopic characteristics of organic matter in two drill cores from the ZF, covering 500 m of stratigraphy, by using secondary ion mass spectrometry (SIMS). The results confirm that the organic matter has to a large extent preserved the primary isotopic signatures, whereas secondary effects are limited (<4‰). The sample-scale isotopic heterogeneity, defined as the difference between the maximum and minimum δ13C values obtained by SIMS from every individual sample, increases from typically <5‰ in the lower part of stratigraphy to systematically larger values (up to 11‰) in the upper part, which coincides with the decreasing trend of δ13Corg of bulk samples from −25 to −40‰. Samples with either relatively high (c. −25‰) or low (c. −40‰) δ13Corg values have small sample-scale isotopic heterogeneities, while samples with intermediate δ13Corg values (between −25 and −40‰) have significantly larger heterogeneities. These observations imply the co-existence of photoautotrophic and methanotrophic biomass during deposition of the upper part of the stratigraphy. Our study provides insight into the carbon isotopic characteristics of organic matter and suggests that the negative excursion of δ13Corg in the ZF is induced by a methanotrophic microbial ecosystem sustained by seepage of thermogenic methane during the deposition of the ZF and contemporaneous igneous activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy