SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leroux Virginie) "

Sökning: WFRF:(Leroux Virginie)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
2.
  •  
3.
  • Chapuis, Julien, et al. (författare)
  • Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism
  • 2017
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:6, s. 955-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer’s disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the “post-GWAS” era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a β3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aβ peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aβ peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aβ peptide production.
  •  
4.
  •  
5.
  •  
6.
  • Dahlin, Torleif, et al. (författare)
  • Improvement in time-domain induced polarization data quality with multi-electrode systems by separating current and potential cables
  • 2012
  • Ingår i: Near Surface Geophysics. - : Wiley. - 1873-0604 .- 1569-4445. ; 10:6, s. 545-565
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring induced polarization in the time domain with relatively compact multi-channel multi-electrode systems is attractive because of the simplicity of the procedure and thus its efficiency in the field. However the use of this technique is sometimes discouraged by the bad quality of the measurements in cases of high electrode contact resistances that can render data interpretation infeasible or at least unreliable. It is proposed that capacitive coupling in the multi-core electrode cables has a significant role in creating this problem. In such cases separation of current and potential circuits by using separate multi-conductor cable spreads can yield significant improvement in data quality. The procedure is relatively simple and can be implemented with common resistivity and time-domain IP equipment. We show here three field examples from Southern Sweden, all measured as 2D electrical imaging sections. The first one is an example where the use of a single cable spread is sufficient thanks to moderate electrode contact resistance and high signal levels. The following two examples are from sites where induced polarization measurements could not yield consistent results using only a single multi-conductor cable spread. Useful results were subsequently obtained by using separate cable spreads. The first example is a 280 m long line measured over an old covered municipal waste deposit where the waste body stands out as a zone of high chargeability. The second example is a 120 m line measured on a sandy glaciofluvial structure that is host to an aquifer of regional importance. The improvement led to discrimination between materials of different grain sizes, with potential bearing for understanding the aquifer. The third example is a 300-400 m line measured across an esker lying on clay till. The improvement led to a clear visualization of the esker and to the identification of a possible fault in the underlying gneissic bedrock. In all cases pseudosections and examples of chargeability decay curves are shown and discussed as tools for assessing data quality. Inversion results are shown together with background geological information and it is concluded that they are in good agreement.
  •  
7.
  • Dahlin, Torleif, et al. (författare)
  • Improvement in Time-domain IP Data Quality with Multi-electrode Systems by Separating Current and Potential Cables
  • 2011
  • Ingår i: ; , s. 01-01
  • Konferensbidrag (refereegranskat)abstract
    • Good quality time-domain IP data can be obtained using multi-electrode resistivity-IP equipment and standard electrode cable layouts at sites with favourable electrode contact. High contact resistances often result in low signal levels and capacitive coupling problems making the IP signals drown in noise. We tested an approach for measuring with separated cable spreads for current transmission and potential measurement with an instrument with transmitter, receiver and relay switch housed in the same box. Stainless electrodes and standard non-shielded multi-electrode cables with were used throughout. Data quality assessment was done via pseudosections, IP decay curves and full waveform plots. The results show that it is possible to improve the IP data quality at a site with unfavourable electrode grounding conditions. The results suggest that most of the coupling problems arise in the multi-core electrode cables, and that the problems can be reduced dramatically by separating the cable spreads for transmitting current and measuring potentials. The procedure used is relatively simple and applicable for current field measurements. Inversion of the recorded data results in low residuals and produces models that fit well with the geology at the site, although more detailed information would be needed to fully explain the observed phenomena. ...
  •  
8.
  • Dahlin, Torleif, et al. (författare)
  • Measuring techniques in induced polarisation imaging
  • 2002
  • Ingår i: Journal of Applied Geophysics. - 0926-9851. ; 50:3, s. 279-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-electrode geoelectrical imaging has become very popular and is used for many different purposes. For some of these, the inclusion of IP data would be desirable as it would allow the interpreter to distinguish between, e.g. sand formations with saltwater infiltration and clay formations or help delineate landfills. However, present-day IP measuring techniques require the use of nonpolarisable potential electrodes and special wire layout and are thus cumbersome and expensive. In this paper, we suggest making IP measurements with multi-electrode cables and just one set of steel electrodes. The polarisation potentials on the potential electrodes are corrected for by subtracting the polarisation potential measured when no primary current and no IP signal are present. Test measurements indicate that the polarisation potentials vary slowly and that the correction procedure is feasible. At two sites in southern Sweden, we have compared measurements with only stainless steel electrodes and measurements with both stainless steel and Pb-PbCl nonpolarisable electrodes using one or two sets of multicore cables, respectively. Almost no difference between the two data sets was observed. At one site, the charge-up effect on the potential electrodes was not important, while at the other site, the correction procedure was crucial. Though only two sites have been studied so far, it seems that time-domain IP imaging measurements can be taken with only steel electrodes and ordinary multicore cables. Coupling in the multicore cables has not presented any problems at the investigated sites where grounding resistances were moderate, making the coupling effect small. High grounding resistance sites have not yet been investigated. (C) 2002 Published by Elsevier Science B.V.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy