SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leslie W.D.) "

Sökning: WFRF:(Leslie W.D.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Blain, H., et al. (författare)
  • A comprehensive fracture prevention strategy in older adults : the European union geriatric medicine society (EUGMS) statement
  • 2016
  • Ingår i: European Geriatric Medicine. - : Elsevier. - 1878-7649 .- 1878-7657. ; 7:6, s. 519-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Prevention of fragility fractures in older people has become a public health priority, although the most appropriate and cost-effective strategy remains unclear. In the present statement, the Interest group on falls and fracture prevention of the European union geriatric medicine society (EUGMS), in collaboration with the International association of gerontology and geriatrics for the European region (IAGG-ER), the European union of medical specialists (EUMS), the Fragility fracture network (FFN), the International osteoporosis foundation (IOF) - European society for clinical and economic aspects of osteoporosis and osteoarthritis (ECCEO), outlines its views on the main points in the current debate in relation to the primary and secondary prevention of falls, the diagnosis and treatment of bone fragility, and the place of combined falls and fracture liaison services for fracture prevention in older people.
  •  
3.
  • Brennan, S L, et al. (författare)
  • FRAX provides robust fracture prediction regardless of socioeconomic status.
  • 2013
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 25:1, s. 61-69
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the fracture risk assessment tool (FRAX) Canada calibration and discrimination according to income quintile in 51,327 Canadian women, with and without a competing mortality framework. Our data show that, under a competing mortality framework, FRAX provides robust fracture prediction and calibration regardless of socioeconomic status (SES).
  •  
4.
  • Ferrari, S. L., et al. (författare)
  • Diagnosis and management of bone fragility in diabetes : an emerging challenge
  • 2018
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 29:12, s. 2585-2596
  • Tidskriftsartikel (refereegranskat)abstract
    • Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. Yet the identification and management of fracture risk in these patients remains challenging. This review explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (i.e., FRAX) in these patients. It further reviews the impact of diabetes drugs on bone as well as the efficacy of osteoporosis treatments in this population. We finally propose an algorithm for the identification and management of diabetic patients at increased fracture risk.
  •  
5.
  • Forgetta, V., et al. (författare)
  • Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study
  • 2020
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Since screening programs identify only a small proportion of the population as eligible for an intervention, genomic prediction of heritable risk factors could decrease the number needing to be screened by removing individuals at low genetic risk. We therefore tested whether a polygenic risk score for heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-can identify low-risk individuals who can safely be excluded from a fracture risk screening program. Methods and findings A polygenic risk score for SOS was trained and selected in 2 separate subsets of UK Biobank (comprising 341,449 and 5,335 individuals). The top-performing prediction model was termed "gSOS", and its utility in fracture risk screening was tested in 5 validation cohorts using the National Osteoporosis Guideline Group clinical guidelines (N= 10,522 eligible participants). All individuals were genome-wide genotyped and had measured fracture risk factors. Across the 5 cohorts, the average age ranged from 57 to 75 years, and 54% of studied individuals were women. The main outcomes were the sensitivity and specificity to correctly identify individuals requiring treatment with and without genetic prescreening. The reference standard was a bone mineral density (BMD)-based Fracture Risk Assessment Tool (FRAX) score. The secondary outcomes were the proportions of the screened population requiring clinical-risk-factor-based FRAX (CRF-FRAX) screening and BMD-based FRAX (BMD-FRAX) screening. gSOS was strongly correlated with measured SOS (r(2)= 23.2%, 95% CI 22.7% to 23.7%). Without genetic prescreening, guideline recommendations achieved a sensitivity and specificity for correct treatment assignment of 99.6% and 97.1%, respectively, in the validation cohorts. However, 81% of the population required CRF-FRAX tests, and 37% required BMD-FRAX tests to achieve this accuracy. Using gSOS in prescreening and limiting further assessment to those with a low gSOS resulted in small changes to the sensitivity and specificity (93.4% and 98.5%, respectively), but the proportions of individuals requiring CRF-FRAX tests and BMD-FRAX tests were reduced by 37% and 41%, respectively. Study limitations include a reliance on cohorts of predominantly European ethnicity and use of a proxy of fracture risk. Conclusions Our results suggest that the use of a polygenic risk score in fracture risk screening could decrease the number of individuals requiring screening tests, including BMD measurement, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. Author summaryWhy was this study done? Osteoporosis screening identifies only a small proportion of the screened population to be eligible for intervention. The prediction of heritable risk factors using polygenic risk scores could decrease the number of screened individuals by reassuring those with low genetic risk. We investigated whether the genetic prediction of heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-could be incorporated into an established screening guideline to identify individuals at low risk for osteoporosis. What did the researchers do and find? Using UK Biobank, we developed a polygenic risk score (gSOS) consisting of 21,717 genetic variants that was strongly correlated with SOS ( = 23.2%). Using the National Osteoporosis Guideline Group clinical assessment guidelines in 5 validation cohorts, we estimate that reassuring individuals with a high gSOS, rather than doing further assessments, could reduce the number of clinical-risk-factor-based Fracture Risk Assessment Tool (FRAX) tests and bone-density-measurement-based FRAX tests by 37% and 41%, respectively, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. What do these findings mean? We show that genetic pre-screening could reduce the number of screening tests needed to identify individuals at risk of osteoporotic fractures. Therefore, the potential exists to improve the efficiency of osteoporosis screening programs without large losses in sensitivity or specificity to identify individuals who should receive an intervention. Further translational studies are needed to test the clinical applications of this polygenic risk score; however, our work shows how such scores could be tested in the clinic.
  •  
6.
  • Johansson, Lena, 1972, et al. (författare)
  • Improved fracture risk prediction by adding VFA-identified vertebral fracture data to BMD by DXA and clinical risk factors used in FRAX
  • 2022
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 33:8, s. 1725-1738
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebral fracture (VF) is a strong predictor of subsequent fracture. In this study of older women, VF, identified by dual-energy X-ray absorptiometry (DXA) vertebral fracture assessment (VFA), were associated with an increased risk of incident fractures and had a substantial impact on fracture probability, supporting the utility of VFA in clinical practice. Purpose Clinical and occult VF can be identified using VFA with dual-energy X-ray absorptiometry (DXA). The aim of this study was to investigate to what extent VFA-identified VF improve fracture risk prediction, independently of bone mineral density (BMD) and clinical risk factors used in FRAX. Methods A total of 2852 women, 75-80 years old, from the prospective population-based study SUPERB cohort, were included in this study. At baseline, BMD was measured by DXA, VF diagnosed by VFA, and questionnaires used to collect data on risk factors for fractures. Incident fractures were captured by X-ray records or by diagnosis codes. An extension of Poisson regression was used to estimate the association between VFA-identified VF and the risk of fracture and the 5- and 10-year probability of major osteoporotic fracture (MOF) was calculated from the hazard functions for fracture and death. Results During a median follow-up of 5.15 years (IQR 4.3-5.9 years), the number of women who died or suffered a MOF, clinical VF, or hip fracture was 229, 422, 160, and 124, respectively. A VFA-identified VF was associated with an increased risk of incident MOF (hazard ratio [HR] = 1.78; 95% confidence interval [CI] 1.46-2.18), clinical VF (HR = 2.88; 95% [CI] 2.11-3.93), and hip fracture (HR = 1.67; 95% [CI] 1.15-2.42), adjusted for age, height, and weight. For women at age 75 years, a VFA-identified VF was associated with 1.2-1.4-fold greater 10-year MOF probability compared with not taking VFA into account, depending on BMD. Conclusion Identifying an occult VF using VFA has a substantial impact on fracture probability, indicating that VFA is an efficient method to improve fracture prediction in older women.
  •  
7.
  • Kanis, J. A., et al. (författare)
  • A decade of FRAX: how has it changed the management of osteoporosis?
  • 2020
  • Ingår i: Aging Clinical and Experimental Research. - : Springer Science and Business Media LLC. - 1594-0667 .- 1720-8319. ; 32:2, s. 187-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The fracture risk assessment tool, FRAX(R), was released in 2008 and provides country-specific algorithms for estimating individualized 10-year probability of hip and major osteoporotic fracture (hip, clinical spine, distal forearm, and proximal humerus). Since its release, 71 models have been made available for 66 countries covering more than 80% of the world population. The website receives approximately 3 million visits annually. Following independent validation, FRAX has been incorporated into more than 80 guidelines worldwide. The application of FRAX in assessment guidelines has been heterogeneous with the adoption of several different approaches in setting intervention thresholds. Whereas most guidelines adopt a case-finding strategy, the case for FRAX-based community screening in the elderly is increasing. The relationship between FRAX and efficacy of intervention has been explored and is expected to influence treatment guidelines in the future.
  •  
8.
  •  
9.
  • Kanis, J. A., et al. (författare)
  • Adjusting conventional FRAX estimates of fracture probability according to the number of prior falls in the preceding year
  • 2023
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 34:3, s. 479-487
  • Tidskriftsartikel (refereegranskat)abstract
    • A Summary A greater propensity to falling is associated with higher fracture risk. This study provides adjustments to FRAX-based fracture probabilities accounting for the number of prior falls. Introduction Prior falls increase subsequent fracture risk but are not currently directly included in the FRAX tool. The aim of this study was to quantify the effect of the number of prior falls on the 10-year probability of fracture determined with FRAX (R). Methods We studied 21,116 women and men age 40 years or older (mean age 65.7 +/- 10.1 years) with fracture probability assessment (FRAX (R)), self-reported falls for the previous year, and subsequent fracture outcomes in a registry-based cohort. The risks of death, hip fracture, and non-hip major osteoporotic fracture (MOF-NH) were determined by Cox proportional hazards regression for fall number category versus the whole population (i.e., an average number of falls). Ten-year probabilities of hip fracture and major osteoporotic fracture (MOF) were determined according to the number of falls from the hazards of death and fracture incorporated into the FRAX model for the UK. The probability ratios (number of falls vs. average number of falls) provided adjustments to conventional FRAX estimates of fracture probability according to the number of falls. Results Compared with the average number of falls, the hazard ratios for hip fracture, MOF-NH and death were lower than unity in the absence of a fall history. Hazard ratios increased progressively with an increasing number of reported falls. The probability ratio rose progressively as the number of reported falls increased. Probability ratios decreased with age, an effect that was more marked the greater the number of prior falls. Conclusion The probability ratios provide adjustments to conventional FRAX estimates of fracture probability according to the number of prior falls.
  •  
10.
  • Kanis, J. A., et al. (författare)
  • FRAX and fracture prediction without bone mineral density
  • 2015
  • Ingår i: Climacteric. - : Informa UK Limited. - 1369-7137 .- 1473-0804. ; 18:Suppl. 2, s. 2-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The major application of FRAX in osteoporosis is to direct pharmacological interventions to those at high risk of fracture. Whereas the efficacy of osteoporosis treatment, with the possible exception of alendronate, is largely independent of baseline bone mineral density (BMD), it remains a widely held perception that osteoporosis therapies are only effective in the presence of low BMD. Thus, the use of FRAX in the absence of BMD to identify individuals requiring therapy remains the subject of some debate and is the focus of this review. The clinical risk factors used in FRAX have high evidence-based validity to identify a risk responsive to intervention. The selection of high-risk individuals with FRAX, without knowledge of BMD, preferentially selects for low BMD and thus identifies a risk that is responsive to pharmacological intervention. The prediction of fractures with the use of clinical risk factors alone in FRAX is comparable to the use of BMD alone to predict fractures and is suitable, therefore, in the many countries where facilities for BMD testing are sparse. In countries where access to BMD is greater, FRAX can be used without BMD in the majority of cases and BMD tests reserved for those close to a probability-based intervention threshold. Thus concerns surrounding the use of FRAX in clinical practice without information on BMD are largely misplaced. © 2015 International Menopause Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy