SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lett S.) "

Sökning: WFRF:(Lett S.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Rixen, C., et al. (författare)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
3.
  •  
4.
  • Ching, C. R. K., et al. (författare)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 56-82
  • Tidskriftsartikel (refereegranskat)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
5.
  • Thomas, A. J., et al. (författare)
  • A Longitudinal Study of Plasma pTau181 in Mild Cognitive Impairment with Lewy Bodies and Alzheimer's Disease
  • 2022
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 37:7, s. 1495-1504
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Alzheimer's disease (AD) co-pathology is common in dementia with Lewy bodies and is associated with increased decline. Plasma pTau181 is a blood-based biomarker that can detect AD co-pathology. Objectives We investigated whether pTau181 was associated with cognitive decline in mild cognitive impairment with Lewy bodies (MCI-LB) and MCI with AD (MCI-AD). Methods We assessed plasma pTau181 using a single-molecule array (Simoa) immunoassay at baseline and follow-up in a longitudinal cohort of MCI-LB, MCI-AD, and controls. Results One hundred forty-six subjects (56 probable MCI-LB, 22 possible MCI-LB, 44 MCI-AD, and 24 controls) were reviewed for up to 5.7 years. Probable MCI-LB had significantly higher pTau181 (22.2% mean increase) compared with controls and significantly lower (24.4% mean decrease) levels compared with MCI-AD. Receiver operating characteristic analyses of pTau181 in discriminating probable MCI-LB from controls showed an area under the curve (AUC) of 0.68 (83% specificity, 57% sensitivity); for discriminating MCI-AD from healthy controls, AUC was 0.8 (83.3% specificity, 72.7% sensitivity). pTau181 concentration was less useful in discriminating between probable MCI-LB and MCI-AD: AUC of 0.64 (71.4% specificity, 52.3% sensitivity). There was an association between pTau181 and cognitive decline in MCI-AD but not in MCI-LB. In a subset with repeat samples there was a nonsignificant 3% increase per follow-up year in plasma pTau181. The rate of change in pTau181 was not significantly different in different diagnostic subgroups. Conclusions pTau181 was not associated with an increased decline assessed using either baseline or repeat pTau181. pTau181 partially discriminated probable MCI-LB from controls and MCI-AD from controls but was not useful in distinguishing probable MCI-LB from MCI-AD.
  •  
6.
  •  
7.
  • Lett, Signe, et al. (författare)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • Ingår i: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy