SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leuzinger Sebastian) "

Sökning: WFRF:(Leuzinger Sebastian)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hovenden, Mark J., et al. (författare)
  • Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2
  • 2019
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 5, s. 167-173
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO 2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO 2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO 2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO 2 response offset each other, constraining the response of ecosystem productivity to rising CO 2 . This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO 2 could be substantially less than anticipated.
  •  
2.
  • Leuzinger, Sebastian, et al. (författare)
  • A sink-limited growth model improves biomass estimation along boreal and alpine tree lines
  • 2013
  • Ingår i: Global Ecology and Biogeography. - HOBOKEN 07030-5774, NJ USA : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 22:8, s. 924-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Despite increasing evidence for plant growth often being limited by sink (meristem) activity rather than source (photosynthesis) activity, all currently available dynamic global vegetation models (DGVMs) simulate plant growth via source-limited processes. For a given climatic region, this may lead to an overestimation of carbon stock per unit surface area, particularly if a model fails to correctly predict forest cover. Our aim is to improve the Lund-Potsdam-Jena (LPJ) DGVM by replacing the source-limited (SoL) tree growth algorithm by a sink-limited (SiL) one. Location Our analysis focuses on the cold tree line at high latitudes and altitudes. We study two altitudinal transects in the Swiss Alps and the northern tree line. Methods We limit annual net primary productivity of the LPJ DGVM by an algorithm based on the annual sum of growing degree-days (GDD), assuming that maximum plant growth is reached asymptotically with increasing GDD. Results Comparing simulation results with observational data, we show that the locations of both the northern and the alpine tree line are estimated more accurately when using a SiL algorithm than when using the commonly employed SoL algorithm. Also, simulated carbon stocks decrease in a more realistic manner towards the tree line when the SiL algorithm is used. This has far-reaching implications for estimating and projecting present and future carbon stocks in temperature-limited ecosystems. Main conclusions In the range of 60-80 degrees N over Europe and Asia, carbon stored in vegetation is estimated to be c. 50% higher in the LPJ standard version (LPJ-SoL) compared with LPJ-SiL, resulting in a global difference in estimated biomass of 25 Pg (c. 5% of the global terrestrial standing biomass). Similarly, the simulated elevation of the upper tree line in the European Alps differs by c. 400 m between the two model versions, thus implying an additional overestimation of carbon stored in mountain forests around the world.
  •  
3.
  • Leuzinger, Sebastian, et al. (författare)
  • Poor methodology for predicting large-scale tree die-off
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:38
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Liu, Yulin, et al. (författare)
  • Soil type and temperature determine soil respiration seasonal dynamics in dairy grassland
  • 2024
  • Ingår i: Soil Ecology Letters. - : Springer Nature. - 2662-2289. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil respiration rates (Rs) were measured in New Zealand dairy grassland. Both season and soil type significantly affected Rs. Soil temperature and soil type dominated overall Rs.Soil respiration (R s), the CO2 release from root respiration and microbial metabolism, affects global soil carbon storage and cycling. Only few studies have looked at R s in the southern hemisphere, especially regarding the interaction between soil type and environmental factors on R s in dairy grassland. We investigated the relationship between R s and soil temperature (T s), soil water content (SWC), soil type, and other environmental factors based on summer and winter measurements at four sites in New Zealand. Across sites, soil respiration rates ranged from 0.29 to 14.58 with a mean of 5.38 +/- 0.13 (mean +/- standard error) mu mol CO2 m-2 s-1. Mean summer R s was 86.5% higher than mean winter R s, largely driven by organic/gley and pumice soils while ultic soils showed very little seasonal temperature sensitivity. Overall mean R s in organic/gley soils was 108.0% higher than that in ultic soils. The high R s rate observed in organic/gley was likely due to high soil organic matter content, while low R s in ultic and pallic soils resulted from high clay content and low hydraulic conductance. Soil temperature drove overall R s. Our findings indicate that soil type and soil temperature together best explain R s. This implies that a mere classification of land use type may be insufficient for global C models and should be supplemented with soil type information, at least locally.
  •  
5.
  • Pappas, Christoforos, et al. (författare)
  • Sensitivity analysis of a process-based ecosystem model : Pinpointing parameterization and structural issues
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union. - 2169-8953 .- 2169-8961. ; 118:2, s. 505-528
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic vegetation models have been widely used for analyzing ecosystem dynamics and their interactions with climate. Their performance has been tested extensively against observations and by model intercomparison studies. In the present analysis, Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), a state-of-the-art ecosystem model, was evaluated by performing a global sensitivity analysis. The study aims at examining potential model limitations, particularly with regard to long-term applications. A detailed sensitivity analysis based on variance decomposition is presented to investigate structural model assumptions and to highlight processes and parameters that cause the highest variability in the output. First- and total-order sensitivity indices were calculated for selected parameters using Sobol's methodology. In order to elucidate the role of climate on model sensitivity, different climate forcings were used based on observations from Switzerland. The results clearly indicate a very high sensitivity of LPJ-GUESS to photosynthetic parameters. Intrinsic quantum efficiency alone is able to explain about 60% of the variability in vegetation carbon fluxes and pools for a wide range of climate forcings. Processes related to light harvesting were also found to be important together with parameters affecting forest structure (growth, establishment, and mortality). The model shows minor sensitivity to hydrological and soil texture parameters, questioning its skills in representing spatial vegetation heterogeneity at regional or watershed scales. In the light of these results, we discuss the deficiencies of LPJ-GUESS and possibly that of other, structurally similar, dynamic vegetation models and we highlight potential directions for further model improvements.
  •  
6.
  • Ravi, Sridevi, et al. (författare)
  • Are the well-fed less thirsty? : Effects of drought and salinity on New Zealand mangroves
  • 2022
  • Ingår i: Journal of Plant Ecology. - : Oxford University Press. - 1752-9921 .- 1752-993X. ; 15:1, s. 85-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite a large number of studies examining the effects of abiotic stress factors on plants, the mechanistic explanations of drought-induced tree mortality remain inconclusive and even less is known about how multiple stressors interact. The role of non-structural carbohydrates (NSCs) in preventing or postponing drought mortality is gaining attention. Here, we tested the role of NSCs in mitigating the effects of drought and salinity in New Zealand mangroves, Avicennia marina subsp. australasica. We experimentally manipulated plant NSC levels, prior to subjecting them to combinations of drought and salinity. Plant growth and survival rates were 2- and 3-fold higher in the high-NSC (H-NSC) group than in the low-NSC (L-NSC) group under high salinity and drought conditions, respectively. After 12 weeks under high salinity-high drought conditions, the H-NSC group showed higher stem hydraulic conductivity (281 +/- 50 mmol cm(-1) s(-1) MPa-1) compared with the L-NSC group (134 +/- 40 mmol cm(-1) s(-1) MPa-1). Although starch levels remained relatively constant, we found a 20% increase in soluble sugars in the stems of H-NSC group under high drought and high salinity in week 8 compared with week 12. Our results suggest (i) an important role of NSCs in mitigating the effects of low soil water potential caused by drought and salinity, and (ii) sink-limited growth under conditions of combined salinity and drought.
  •  
7.
  • Reyer, Christopher P. O., et al. (författare)
  • A plant's perspective of extremes : terrestrial plant responses to changing climatic variability
  • 2013
  • Ingår i: Global Change Biology. - HOBOKEN 07030-5774, NJ USA : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 19:1, s. 75-89
  • Forskningsöversikt (refereegranskat)abstract
    • We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
  •  
8.
  • Van Sundert, Kevin, et al. (författare)
  • When things get MESI : The Manipulation Experiments Synthesis Initiative—A coordinated effort to synthesize terrestrial global change experiments
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:7, s. 1922-1938
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.
  •  
9.
  • Walker, Anthony P., et al. (författare)
  • Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:5, s. 2413-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy