SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lewandowski Sebastian) "

Sökning: WFRF:(Lewandowski Sebastian)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Annelies, Nonneman, et al. (författare)
  • Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Neurobiology of Disease. - : Academic Press. - 0969-9961 .- 1095-953X. ; 119, s. 26-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1(G93A) mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1(G93A) mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1(G93A) mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
  •  
2.
  • Crivello, M., et al. (författare)
  • Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model
  • 2019
  • Ingår i: Disease Models and Mechanisms. - : Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS.
  •  
3.
  • Månberg, Anna, 1985-, et al. (författare)
  • Altered perivascular fibroblast activity precedes ALS disease onset
  • 2021
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 27:4, s. 640-646
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from well-defined factors in neuronal cells1, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia2,3 and blood vessels4. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins SPP1 and COL6A1 accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid. We propose that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology.
  •  
4.
  • Peters, S., et al. (författare)
  • Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling
  • 2021
  • Ingår i: Neurotherapeutics. - : Springer Nature. - 1933-7213 .- 1878-7479. ; 18:3, s. 1963-1979
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult neurogenesis is a target for brain rejuvenation as well as regeneration in aging and disease. Numerous approaches showed efficacy to elevate neurogenesis in rodents, yet translation into therapies has not been achieved. Here, we introduce a novel human TGFβ-RII (Transforming Growth Factor—Receptor Type II) specific LNA-antisense oligonucleotide (“locked nucleotide acid”—“NVP-13”), which reduces TGFβ-RII expression and downstream receptor signaling in human neuronal precursor cells (ReNcell CX® cells) in vitro. After we injected cynomolgus non-human primates repeatedly i.th. with NVP-13 in a preclinical regulatory 13-week GLP-toxicity program, we could specifically downregulate TGFβ-RII mRNA and protein in vivo. Subsequently, we observed a dose-dependent upregulation of the neurogenic niche activity within the hippocampus and subventricular zone: human neural progenitor cells showed significantly (up to threefold over control) enhanced differentiation and cell numbers. NVP-13 treatment modulated canonical and non-canonical TGFβ pathways, such as MAPK and PI3K, as well as key transcription factors and epigenetic factors involved in stem cell maintenance, such as MEF2A and pFoxO3. The latter are also dysregulated in clinical neurodegeneration, such as amyotrophic lateral sclerosis. Here, we provide for the first time in vitro and in vivo evidence for a novel translatable approach to treat neurodegenerative disorders by modulating neurogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy