SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Fengfu) "

Sökning: WFRF:(Li Fengfu)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahn, Jae-Il, et al. (författare)
  • Crosslinked collagen hydrogels as corneal implants: Effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier. - 1742-7061 .- 1878-7568. ; 9:8, s. 7796-7805
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that recombinant human collagen can be crosslinked with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) to fabricate transparent hydrogels possessing the shape and dimensions of the human cornea. These corneal implants have been tested in a Phase I human clinical study. Although these hydrogels successfully promoted corneal tissue and nerve regeneration, the gelling kinetics were difficult to control during the manufacture of the implants. An alternative carbodiimide capable of producing hydrogels of similar characteristics as EDC in terms of strength and biocompatibility, but with a longer gelation time would be a desirable alternative. Here, we compared the crosslinking kinetics and properties of hydrogels crosslinked with a sterically bulky carbodiimide, N-Cyclohexyl-N-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMC), with that of EDC. CMC crosslinking was possible at ambient temperature whereas the EDC reaction was too rapid to control and had to be carried out at low temperatures. The highest tensile strength obtained using optimized formulations were equivalent, although CMC crosslinked hydrogels were found to be stiffer. The collagenase resistance of CMC crosslinked hydrogels was superior to that of EDC crosslinked hydrogels while biocompatibility was similar. We are also able to substitute porcine collagen with recombinant human collagen and show that the in vivo performance of both resulting hydrogels as full-thickness corneal implants is comparable in a mouse model of an orthotopic corneal graft. In conclusion, CMC is a viable alternative to EDC as a crosslinker for collagen-based biomaterials for use as corneal implants, and potentially for use in other tissue engineering applications.
  •  
2.
  • Griffith, May, et al. (författare)
  • Artificial human corneas - Scaffolds for transplantation and host regeneration
  • 2002
  • Ingår i: Cornea. - : Lippincott, Williams andamp; Wilkins. - 0277-3740 .- 1536-4798. ; 21:7, s. S54-S61
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose. To review the development of artificial corneas (prostheses and tissue equivalents) for transplantation, and to provide recent updates on our tissue-engineered replacement corneas. Methods. Modified natural polymers and synthetic polymers were screened for their potential to replace damaged portions of the human cornea or the entire corneal thickness. These polymers, combined with cells derived from each of the three main corneal layers or stem cells, were used to develop artificial corneas. Functional testing was performed in vitro. Trials of biocompatibility and immune and inflammatory reactions were performed by implanting the most promising polymers into rabbit corneas. Results. Collagen-based biopolymers, combined with synthetic crosslinkers or copolymers, formed effective scaffolds for developing prototype artificial corneas that could be used as tissue replacements in the future. We have previously developed an artificial cornea that mimicked key morphologic and functional properties of the human cornea. The addition of synthetic polymers increased its toughness as it retained transparency and low light scattering, making the matrix scaffold more suitable for transplantation. These new composites were implanted into rabbits without causing any acute inflammation or immune response. We have also fabricated full-thickness composites that can be fully sutured. However, the long-term effects of these artificial corneas need to be evaluated. Conclusions. Novel tissue-engineered corneas that comprise composites of natural and synthetic biopolymers together with corneal cell lines or stem cells will, in the future, replace portions of the cornea that are damaged. Our results provide a basis for the development of both implantable temporary and permanent corneal replacements.
  •  
3.
  • Griffith, May, et al. (författare)
  • Interpenetrating Networks, and Related Methods and Compositions
  • 2007
  • Patent (populärvet., debatt m.m.)abstract
    • The present invention provides interpenetrating polymeric networks (IPNs), and related methods and compositions. The hydrogel material of this invention comprises an interpenetrating network of two or more polymer networks, wherein at least one of the polymer networks is based on a biopolymer. Also provided is a method of producing the hydrogel material comprising, combining a first polymeric network with a second polymeric network, wherein the first polymeric network or the second polymeric network is based on a biopolymer. The present application also discloses devices manufactured from the IPN hydrogel material and uses thereof.
  •  
4.
  • Griffith, May, et al. (författare)
  • Vision Enhancing Ophthalmic Devices and Related Methods and Compositions
  • 2005
  • Patent (populärvet., debatt m.m.)abstract
    • Devices, methods, and compositions for improving vision or treating diseases, disorders or injury of the eye are described. Ophthalmic devices, such as corneal onlays, corneal inlays, and full-thickness corneal implants, are made of a material that is effective in facilitating nerve growth through or over the device. The material may include an amount of collagen greater than 1% (w/w), such as between about 10% (w/w) and about 30% (w/w). The material may include collagen polymers and/or a second biopolymer or water-soluble synthetic polymer cross-linked using EDC/NHS chemistry. The material may additionally comprise a synthetic polymer. The devices are placed into an eye to correct or improve the vision of an individual or to treat a disease, disorder or injury of an eye of an individual.
  •  
5.
  • Li, Fengfu, et al. (författare)
  • Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences; 1999. - 0027-8424 .- 1091-6490. ; 100:26, s. 15346-15351
  • Tidskriftsartikel (refereegranskat)abstract
    • Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required.
  •  
6.
  • Li, Fengfu, et al. (författare)
  • Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration.
  • 2012
  • Ingår i: The open ophthalmology journal. - : Bentham open. - 1874-3641. ; 6, s. 54-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bevacizumab (Avastin(®)) has been used by ophthalmologists in many countries as an off-label drug for the treatment of wet age-related macular degeneration (AMD). Due to its short half-life necessitating frequent intravitreal injection, a method for sustained delivery is in need. We demonstrated that bevacizumab could be released in a sustained fashion over 90 days from nano- and microspheres fabricated from poly(DL-lactide-co-glycolide) and poly(ethylene glycol)-b-poly(D,L-lactic acid), respectively. The drug release rate could be adjusted by alteration of the drug/polymer ratio. The use of such nano- and microspheres as bevacizumab delivery vehicles may improve the treatment of wet AMD.
  •  
7.
  • Li, Fengfu, et al. (författare)
  • Corneal implantation with collagen-copolymer matrices
  • 2005
  • Ingår i: Key Engineering Materials. - : Trans Tech Publications. - 1013-9826 .- 1662-9795. ; 288-289, s. 389-392
  • Tidskriftsartikel (refereegranskat)abstract
    • A transparent matrix composed of collagen and poly(N, N-dimethylacrylamide-coacryloxysuccimide), 8mm in diameter and 350 mu m thick was implanted into pigs corneas using the lamellar keratoplasty (LKP) technique. No adverse immune or inflammatory reaction was observed during 4 month implantation period. Regenerated nerve filaments were observed in the subepithelial region and stroma by confacal microscopy. The endothelium of the operated eye was not touched by LKP and remained similar to that of the contra lateral (not operated) eye. The implant remained transparent over the four-month post-operative period, and clinical topography showed reconstitution of a smooth cornea surface. These preliminary results indicated that a new, functional cornea was re-established from the implanted biosynthetic matrix. This bio-synthetic matrix may have applications in other tissue engineering areas,, especially where innervation is important.
  •  
8.
  • Liu, Wenguang, et al. (författare)
  • Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation
  • 2008
  • Ingår i: Journal of materials science. Materials in medicine. - : Springer Verlag (Germany). - 0957-4530 .- 1573-4838. ; 19:11, s. 3365-3371
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite collagen hydrogel containing protein encapsulated alginate microspheres was developed for ocular applications. Bovine serum albumin (BSA) served as a drug model. The composite hydrogel retained optical clarity and mechanical robustness of control hydrogels without microspheres. A sustained release of BSA was achieved during an 11-day period in neutral phosphate buffer. The composite hydrogel supported human corneal epithelial cell growth and had adequate mechanical strength and excellent optical clarity for possible use as therapeutic lens for drug delivery and/or use as corneal substitute for transplantation into patients who have corneal diseases.
  •  
9.
  • Liu, Wenguang, et al. (författare)
  • Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes
  • 2009
  • Ingår i: BIOMATERIALS. - : Elsevier BV. - 0142-9612. ; 30:8, s. 1551-1559
  • Tidskriftsartikel (refereegranskat)abstract
    • A biointeractive collagen-phospholipid corneal Substitute was fabricated from interpenetrating polymeric networks comprising 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide and N-hydroxysuccinimide crosslinked porcine atelocollagen, and poly(ethylene glycol) diacrylate crosslinked 2-methacryloyloxyethyl phosphorylcholine (MPC). The resulting hydrogels showed ail overall increase in mechanical strength beyond that of either original component and enhanced stability against enzymatic digestion (by collagenase) or UV degradation. More strikingly, these hydrogels retained the full biointeractive, cell friendly properties of collagen in promoting corneal cell and nerve in-growth and, regeneration (despite MPCs known anti-adhesive properties). Measurements of refractive indices, white light transmission and backscatter showed the optical properties of collagen-MPC are comparable or superior to those of the human cornea.In addition, the glucose and albumin permeability were comparable to those Of human corneas. Twelve-month post-implantation results of collagen-MPC hydrogels into mini-pigs showed regeneration of corneal tissue (epithelium, stroma) as well as the tear film and sensory nerves. We also show that porcine collagen can be Substituted with recombinant human collagen, resulting in a fully-synthetic implant that is free from the potential risks of disease transmission (e.g. prions) present in animal Source materials.
  •  
10.
  • Liu, Wenguang, et al. (författare)
  • Recombinant human collagen for tissue engineered corneal substitutes
  • 2008
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 29:9, s. 1147-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • We successfully fabricated transparent, robust hydrogels as corneal substitutes from concentrated recombinant human type I and type III collagen solutions crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). White light transmission through these gels is comparable or superior to that of human corneas. Hydrogels from both type I and type III collagens supported in vitro epithelium and nerve over-growth. While both these biocompatible hydrogels have adequate tensile strength and elasticity for surgical manipulation, type III collagen hydrogels tended to be mechanically superior. Twelve-month post-implantation results of type I recombinant collagen-based corneal substitutes into mini-pigs showed retention of optical clarity, along with regeneration of corneal cells, nerves and tear film. For clinical use, implants based on fully characterized, recombinant human collagen eliminate the risk of pathogen transfer or xenogeneic immuno-responses posed by animal collagens. © 2007 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy