SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Furong) "

Sökning: WFRF:(Li Furong)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Li, Furong, et al. (författare)
  • A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction of Past Plant Cover
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Model-based quantitative reconstruction of past plant cover in Europe has shown great potential for: (i) testing hypotheses related to Holocene vegetation dynamics, biodiversity, and their relationships with climate and land use; (ii) studying long term interactions between climate and land use. Similar model-based quantitative reconstruction of plant cover in China has been restricted due to the lack of standardized datasets of existing estimates of relative pollen productivity (RPP). This study presents the first synthesis of all RPP values available to date for 39 major plant taxa from temperate China and proposes standardized RPP datasets that can be used for model-based quantitative reconstructions of past plant cover using fossil pollen records for the region. We review 11 RPP studies in temperate China based on modern pollen and related vegetation data around the pollen samples. The study areas include meadow, steppe and desert vegetation, various woodland types, and cultural landscapes. We evaluate the strategies of each study in terms of selection of study areas and distribution of study sites; pollen- and vegetation-data collection in field; vegetation-data collection from satellite images and vegetation maps; and data analysis. We compare all available RPP estimates, select values based on precise rules and calculate mean RPP estimates. We propose two standardized RPP datasets for 31 (Alt1) and 29 (Alt2) plant taxa. The ranking of mean RPPs (Alt-2) relative to Poaceae (= 1) for eight major taxa is: Artemisia (21) > Pinus (18.4) > Betula (12.5) > Castanea (11.5) > Elaeagnaceae (8.8) > Juglans (7.5) > Compositae (4.5) > Amaranthaceae/Chenopodiaceae (4). We conclude that although RPPs are comparable between Europe and China for some genera and families, they can differ very significantly, e.g., Artemisia, Compositae, and Amaranthaceae/Chenopodiaceae. For some taxa, we present the first RPP estimates e.g. Castanea, Elaeagnaceae, and Juglans. The proposed standardized RPP datasets are essential for model-based reconstructions of past plant cover using fossil pollen records from temperate China.
  •  
3.
  • Li, Furong, et al. (författare)
  • Towards quantification of Holocene anthropogenic land-cover change in temperate China : A review in the light of pollen-based REVEALS reconstructions of regional plant cover
  • 2020
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 203, s. 1-25
  • Forskningsöversikt (refereegranskat)abstract
    • In an attempt to quantify Holocene anthropogenic land-cover change in temperate China, we 1) applied the REVEALS model to estimate plant-cover change using 94 pollen records and relative pollen productivity for 27 plant taxa, 2) reviewed earlier interpretation of pollen studies in terms of climate- and human-induced vegetation change, and 3) reviewed information on past land use from archaeological studies. REVEALS achieved a more realistic reconstruction of plant-cover change than pollen percentages in terms of openland versus woodland. The study suggests successive human-induced changes in vegetation cover. The first signs of human-induced land-cover change (crop cultivation, otherwise specified) are found c. 7 ka BP in the temperate deciduous forest, and S and NE Tibetan Plateau (mainly grazing, possibly crop cultivation), 6.5-6 ka BP in the temperate steppe and temperate desert (grazing, uncertain), and 5.5-5 ka BP in the coniferous-deciduous mixed forest, NE subtropical region, and NW Tibetan Plateau (grazing). Further intensification of anthropogenic land-cover change is indicated 5-4.5 ka BP in the E temperate steppe, and S and NE Tibetan Plateau (grazing, cultivation uncertain), 3.5-3 ka BP in S and NE Tibetan Plateau, W temperate steppe, temperate desert (grazing), and NW Tibetan Plateau (probably grazing), and 2.5-2 ka BP in the temperate deciduous forest, N subtropical region, and temperate desert (grazing). These changes generally agree with increased human activity as documented by archaeological studies. REVEALS reconstructions have a stronger potential than biomization to evaluate scenarios of anthropogenic land-cover change such as HYDE, given they are combined with information from archaeological studies.
  •  
4.
  • Zhao, Yan, et al. (författare)
  • Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau
  • 2014
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 24:9, s. 1137-1145
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zoige Basin on the eastern Tibetan Plateau has the largest area of highland peatlands in China. However, the development history of these peatlands is still poorly understood. Understanding how these carbon-rich ecosystems responded to change in the Asian summer monsoons during the Holocene will provide insight into the peatland carbon accumulation processes under different climate boundary conditions. Here, we document the timing of initiation and expansion histories of these peatlands using 59 new basal peat ages across the Zoige Basin, with 29 ages for initiation analysis and 30 additional ages for lateral expansion analysis. Also, we synthesized basal ages from 26 sites and carbon accumulation records at four sites from previous studies in this region. The results show that the peatland initiation is widespread at 11.5-10 and 7-6 kyr (1 kyr = 1000 cal. yr BP) and the minimum initiation periods occurred after 5 kyr. Our multiple basal ages along eight transects show that slopes are a dominant control on peatland lateral expansion rates, with very slow and less variable rates at slopes >0.4 degrees. Furthermore, we found a significant relationship between peatland basal ages and peat depths from 85 sites, suggesting relatively uniform peat properties. Carbon accumulation rates from detailed downcore analysis at four sites and on the basis of peat depth-basal age relationship show similar patterns with a peak carbon accumulation at 10-8 kyr. On the basis of estimated mean values of bulk density and carbon content from the region, the Holocene average C accumulation for the Zoige Basin is 31.1 g C/m(2)/yr. The widespread peatland initiation and rapid accumulation in the early Holocene were likely in response to higher temperature and stronger summer monsoon intensity, while the slowdown of peatland development during the late Holocene might have been caused by climate cooling and drying.
  •  
5.
  • Li, Furong, et al. (författare)
  • Gridded pollen-based Holocene regional plant cover in temperate and northernsubtropical China suitable for climate modelling
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus Publications. - 1866-3508 .- 1866-3516. ; 15:1, s. 95-112
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first gridded and temporally continuous quantitative pollen-based plant-cover reconstruction for temperate and northern subtropical China over the Holocene (11.7 ka to present) obtained by applying the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model. The objective is to provide a dataset of pollen-based land cover for the last ca. 12 millennia that is suitable for palaeoclimate modelling and for the evaluation of simulated past vegetation cover from dynamic vegetation models and anthropogenic land-cover change (ALCC) scenarios. The REVEALS reconstruction was achieved using 94 selected pollen records from lakes and bogs at a 1 degrees x 1 degrees spatial scale and a temporal resolution of 500 years between 11.7 and 0.7 ka and in three recent time windows (0.7-0.35 ka, 0.35-0.1 ka, and 0.1 ka to present). The dataset includes REVEALS estimates of cover and their standard errors (SEs) for 27 plant taxa in 75 1 degrees x 1 degrees grid cells distributed within the study region. The 27 plant taxa were also grouped into 6 plant functional types and 3 land-cover types (coniferous trees CT, broadleaved trees BT, and C-3 herbs/open land (C3H/OL)), and their REVEALS estimates of cover and related SEs were calculated. We describe the protocol used for the selection of pollen records and the REVEALS application (with parameter settings) and explain the major rationales behind the protocol. As an illustration, we present, for eight selected time windows, gridded maps of the pollen-based REVEALS estimates of cover for the three land-cover types (CT, BT, and C3H/OL). We then discuss the reliability and limitations of the Chinese dataset of Holocene gridded REVEALS plant cover, and its current and potential uses. The dataset is available at the National Tibetan Plateau Data Center (TPDC; Li, 2022; ).
  •  
6.
  • Li, Furong, et al. (författare)
  • Modern pollen–€“climate relationships in north Xinjiang, northwestern China : Implications for pollen-based reconstruction of Holocene climate
  • 2017
  • Ingår i: The Holocene. - : Sage Publications. - 0959-6836 .- 1477-0911. ; 27:7, s. 951-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil pollen records are widely used to reconstruct past climate. Such reconstructions require that the relationships between pollen assemblages, vegetation, and climate are well understood. These can be studied in present circumstances given we assume that modern vegetation and climate are analogous to past ones. In this study, we analyze pollen–vegetation–climate relationships in the Jungar desert and Altay Mountains, northwestern China, a region for which careful reconstruction of past climate is needed to answer unsolved questions on past climate in an area located at the boundary between two different climate regimes (westerlies and monsoon). We use a dataset of 66 surface pollen samples from forest, meadow, steppe, and desert vegetation and six related climate variables, Tann, TJan, TJul, Pann, PJan, and PJul. Principal components analysis, redundancy analysis, Monte Carlo permutation tests, and variation partitioning are applied to quantify these relationships. We also assess pollen ratios as indices of aridity. We find that (1) Pann is the major climatic factor influencing pollen assemblages, followed by PJul, (2) the two variables are not correlated, and (3) the shared effect of (1) PJan and PJul, (2) PJan and Pann, (3) PJul and Tann, and (4) Tann, TJan, and TJul explains a larger portion of the variation in pollen data than the individual effect of each variable. Therefore, robust pollen–climate transfer functions can be developed for Pann and PJul, and several climate variables treated in combination. Artemisia/Chenopodiaceae is a strong index of aridity and Artemisia/Gramineae might be a useful index of Pann and PJul.
  •  
7.
  • Li, Furong, et al. (författare)
  • Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China
  • 2017
  • Ingår i: Vegetation History and Archaeobotany. - : Springer. - 0939-6314 .- 1617-6278. ; 26:6, s. 587-605
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we estimate relative pollen productivity (RPP) for plant taxa characteristic of human-induced vegetation in ancient cultural landscapes of the low mountain ranges of Shandong province in eastern temperate China. RPP estimates are required to achieve pollen-based reconstructions of Holocene plant cover using modelling approaches based on Prentice's and Sugita's theoretical background and models (REVEALS and LOVE). Pollen counts in moss samples and vegetation data from 36 sites were used in the Extended R-Value (ERV) model to estimate the relevant source area of pollen (RSAP) of moss polsters and RPP of major plant taxa. The best results were obtained with the ERV sub-model 3 and Prentice's taxon-specific method (using a Gaussian Plume dispersal model) to distance weight vegetation data. RSAP was estimated to 145 m using the maximum likelihood method. RPP was obtained for 18 taxa of which two taxa had unreliable RPP (Amaranthaceae/Chenopodiaceae and Vitex negundo). RPPs for Castanea, Cupressaceae, Robinia/Sophora, Aster/Anthemis-type, Cannabis/Humulus, Caryophyllaceae, Brassicaceae and Galium-type are the first ones for China. Trees, except Robinia/Sophora (RPP = 0.78 +/- 0.03) have larger RPPs than herbs other than Artemisia (RPP = 24.7 +/- 0.36). The RPPs for Quercus, Pinus and Artemisia are comparable with other RPPs obtained in China, the RPPs for Pinus, Quercus, Ulmus, Cyperaceae and Galium-type with the mean RPPs obtained in Europe, and RPP for Cupressaceae with that for Juniperus in Europe. The values for Aster/Anthemis-type, Caryophyllaceae, Asteraceae SF Cichorioideae and Juglans differ from the few RPPs available in China and/or Europe.
  •  
8.
  • Xu, Qinghai, et al. (författare)
  • Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact : A review based on case studies in China
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 149, s. 151-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil pollen, as a direct proxy record of past vegetation, and indirect proxy record of past climate, plays an essential role in revealing and reconstructing past vegetation and climate. However, relationships between pollen, vegetation and climate are not linear, hence quantitative reconstructions of past vegetation and climate based on pollen records are not straightforward, and results may be highly contradictory and difficult to interpret. One of the main causes of discrepancies between results has been the lack of comprehensive and systematical studies on modern pollen dispersal and deposition processes, particularly on the quantification of these processes. Based on empirical studies performed in China over the last 30 years, this paper provides the state-of-the-art of the understanding of pollen dispersal and deposition processes in China and the remaining questions to be investigated. We show that major progress has been achieved in the study of modern pollen dispersal and deposition processes, and in the application of models of the pollen-vegetation-climate relationships for quantitative reconstruction of past vegetation and climate. However, several issues are not entirely solved or understood yet, such as how to quantify the reworking and re-deposition of pollen grains in quaternary alluvial sediments, the influence of pollen preservation on pollen assemblages, and human impact on vegetation. Even so, the progress made during the last decades makes it possible to achieve significantly more precise and informative reconstructions of past vegetation, land-use and climate in China than was possible earlier.
  •  
9.
  • Cao, Xianyong, et al. (författare)
  • Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus Gesellschaft MBH. - 1814-9324 .- 1814-9332. ; 15:4, s. 1503-1536
  • Tidskriftsartikel (refereegranskat)abstract
    • We collected the available relative pollen productivity estimates (PPEs) for 27 major pollen taxa from Eurasia and applied them to estimate plant abundances during the last 40 ka cal BP (calibrated thousand years before present) using pollen counts from 203 fossil pollen records in northern Asia (north of 40 degrees N). These pollen records were organized into 42 site groups and regional mean plant abundances calculated using the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. Time-series clustering, constrained hierarchical clustering, and detrended canonical correspondence analysis were performed to investigate the regional pattern, time, and strength of vegetation changes, respectively. Reconstructed regional plant functional type (PFT) components for each site group are generally consistent with modern vegetation in that vegetation changes within the regions are characterized by minor changes in the abundance of PFTs rather than by an increase in new PFTs, particularly during the Holocene. We argue that pollen-based REVEALS estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer invades areas dominated by low pollen producers. Comparisons with vegetation-independent climate records show that climate change is the primary factor driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct climate change, e.g. inland Siberia, where a sharp increase in evergreen conifer tree abundance occurred at ca. 7-8 ka cal BP despite an unchanging climate, potentially reflecting their response to complex climate-permafrost-fire-vegetation interactions and thus a possible long-term lagged climate response.
  •  
10.
  • Jiang, Fangyuan, et al. (författare)
  • Relative pollen productivities of the major plant taxa of subtropical evergreen-deciduous mixed woodland in China
  • 2020
  • Ingår i: Journal of Quaternary Science. - : John Wiley & Sons. - 0267-8179 .- 1099-1417. ; 35:4, s. 526-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the relationship between pollen and vegetation is an essential step in the pollen-based quantitative reconstruction of past vegetation cover. In this study, we use the Extended R-Value (ERV) model and a modern dataset of pollen (collected from moss polsters) and related vegetation from 50 sites in the Daba Mountains (subtropical China) to (i) estimate the relevant source area of pollen (RSAP) of the moss samples and the relative pollen productivities (RPPs) of nine major plant taxa-characteristic of the region, and (ii) evaluate the obtained RPPs. The RSAP estimates of moss polsters vary between 225 and 610 m depending on the ERV submodels and models of pollen dispersal and deposition used. The RPP estimates are different from values published in previous studies from temperate and subtropical China. This may be explained by differences in methodology, climate and vegetation (species composition and spatial distribution), of which vegetation is probably the most important factor. The ranking of the RPP estimates for the nine taxa is Pinus > Juglandaceae > D - Quercus (deciduous Quercus) > Poaceae > Rosaceae > Cyperaceae > Anacardiaceae > Castanea > Fabaceae. We use a 'leave-one-out' cross-validation strategy and the Landscape Reconstruction Algorithm (LRA) for pollen-based reconstruction of regional and local plant cover to evaluate the ERV model-based RPP estimates. Both the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites)-based and the LOVE (LOcal Vegetation Estimates)-based plant cover using the RPP estimates are closer to the modern vegetation composition than pollen percentages, thus confirming the applicability of the ERV model and the LRA approach in subtropical China.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy