SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Jiahao) "

Sökning: WFRF:(Li Jiahao)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kristan, Matej, et al. (författare)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • Ingår i: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
2.
  • Yu, Wenjin, et al. (författare)
  • Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid
  • 2022
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It is a critical challenge to diagnose leptomeningeal metastasis (LM), given its technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more time to classify cells under a microscope.Objective: This study aims to establish a deep learning model to classify cancer cells in CSF, thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.Method: The cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from 90 LM patients in the research. We used two deep convolutional neural networks (CNN) models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by Resnet-inception-V2. We evaluated the performance of the proposed models on two external datasets and compared them with the results from 42 doctors of various levels of experience in the human-machine tests. Furthermore, we develop a computer-aided diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.Results: With respect to the validation set, the mean average precision (mAP) of CNN1 is over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-machine tests, the accuracy of CNN1 is similar to the results from experts, with higher accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10% higher than that of experts, with a time consumption of only one-third of that consumed by an expert. Using the CAD software saves 90% working time of cytologists.Conclusion: A deep learning method has been developed to assist the LM diagnosis with high accuracy and low time consumption effectively. Thanks to labeled data and step-by-step training, our proposed method can successfully classify cancer cells in the CSF to assist LM diagnosis early. In addition, this unique research can predict cancer’s primary source of LM, which relies on cytomorphologic features without immunohistochemistry. Our results show that deep learning can be widely used in medical images to classify cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the proposed method is significantly higher than that of specialist doctors, and its performance is better than that of junior doctors and interns. The application of CNNs and CAD software may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
  •  
3.
  • Hu, Chang-Kang, et al. (författare)
  • Native Conditional iSWAP Operation with Superconducting Artificial Atoms
  • 2023
  • Ingår i: Physical Review Applied. - 2331-7019. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the flow of quantum information is a fundamental task for quantum computers, which is unfeasible to realize on classical devices. Coherent devices, which can process quantum states are thus required to route the quantum states that encode information. In this paper we demonstrate experimentally the smallest quantum transistor with a superconducting quantum processor, which is composed of a collector qubit, an emitter qubit, and a coupler (transistor gate). The interaction strength between the collector and emitter qubits is controlled by the frequency and state of the coupler, effectively implementing a quantum switch. Through the coupler-state-dependent Heisenberg (inherent) interaction between the qubits, a single-step (native) conditional iSWAP operation can be applied. To this end, we find that it is useful to take into consideration the higher-energy level for achieving a native and high-fidelity transistor operation. By reconstructing the quantum process tomography, we obtain an operation fidelity of 92.36% when the transistor gate is open (iSWAP implementation) and 95.23% in the case of closed gate (identity gate implementation). The architecture has strong potential in quantum information processing applications with superconducting qubits.
  •  
4.
  • Hu, Chang-Kang, et al. (författare)
  • Optimal charging of a superconducting quantum battery
  • 2022
  • Ingår i: Quantum Science and Technology. - : IOP Publishing. - 2058-9565. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum batteries are miniature energy storage devices and play a very important role in quantum thermodynamics. In recent years, quantum batteries have been extensively studied, but limited in theoretical level. Here we report the experimental realization of a quantum battery based on superconducting qutrit. Our model explores dark and bright states to achieve stable and powerful charging processes, respectively. Our scheme makes use of the quantum adiabatic brachistochrone, which allows us to speed up the battery ergotropy injection. Due to the inherent interaction of the system with its surrounding, the battery exhibits a self-discharge, which is shown to be described by a supercapacitor-like self-discharging mechanism. Our results paves the way for proposals of new superconducting circuits able to store extractable work for further usage.
  •  
5.
  • Kottwitz, Matthew, et al. (författare)
  • Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2
  • 2019
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 9:9, s. 8738-8748
  • Tidskriftsartikel (refereegranskat)abstract
    • Single atom catalysts (SACs) have shown high activity and selectivity in a growing number of chemical reactions. Many efforts aimed at unveiling the structure-property relationships underpinning these activities and developing synthesis methods for obtaining SACs with the desired structures are hindered by the paucity of experimental methods capable of probing the attributes of local structure, electronic properties, and interaction with support-features that comprise key descriptors of their activity. In this work, we describe a combination of experimental and theoretical approaches that include photon and electron spectroscopy, scattering, and imaging methods, linked by density functional theory calculations, for providing detailed and comprehensive information on the atomic structure and electronic properties of SACs. This characterization toolbox is demonstrated here using a model single atom Pt/CeO2 catalyst prepared via a sol-gel-based synthesis method. Isolated Pt atoms together with extra oxygen atoms passivate the (100) surface of nanosized ceria. A detailed picture of the local structure of Pt nearest environment emerges from this work involving the bonding of isolated Pt2+ ions at the hollow sites of perturbed (100) surface planes of the CeO2 support, as well as a substantial (and heretofore unrecognized) strain within the CeO2 lattice in the immediate vicinity of the Pt centers. The detailed information on structural attributes provided by our approach is the key for understanding and improving the properties of SACs.
  •  
6.
  • Li, Yuanyuan, et al. (författare)
  • Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide-supported noble metal catalysts have been extensively studied for decades for the water gas shift (WGS) reaction, a catalytic transformation central to a host of large volume processes that variously utilize or produce hydrogen. There remains considerable uncertainty as to how the specific features of the active metal-support interfacial bonding-perhaps most importantly the temporal dynamic changes occurring therein-serve to enable high activity and selectivity. Here we report the dynamic characteristics of a Pt/CeO2 system at the atomic level for the WGS reaction and specifically reveal the synergistic effects of metal-support bonding at the perimeter region. We find that the perimeter Pt-0-O vacancy-Ce3+ sites are formed in the active structure, transformed at working temperatures and their appearance regulates the adsorbate behaviors. We find that the dynamic nature of this site is a key mechanistic step for the WGS reaction. Revealing the structure and dynamics of active sites is essential to understand catalytic mechanisms. Here the authors demonstrate the dynamic nature of perimeter Pt-0-O vacancy-Ce3+ sites in Pt/CeO2 and the key effects of their dynamics on the mechanism of the water gas shift reaction.
  •  
7.
  • Liu, Shengchun, et al. (författare)
  • Alternative positions of internal heat exchanger for CO2 booster refrigeration system : Thermodynamic analysis and annual thermal performance evaluation
  • 2021
  • Ingår i: International journal of refrigeration. - : ELSEVIER SCI LTD. - 0140-7007 .- 1879-2081. ; 131, s. 1016-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • Refrigeration systems running on transcritical CO2 cycle are considered an alternative to phase-down the use of hydrofluorocarbons (HFCs) in response to the Kigali Amendment. Responding to the need to improve the efficiency of CO2 booster systems and to identify optimum system designs, thermodynamic models of three booster systems are proposed with the use of an internal heat exchanger (IHX). Findings from this study suggest that placing the IHX with a low-temperature fluid side at the suction line of high pressure stage compressor and high-temperature fluid side at the outlet of gas cooler represents the most optimal approach in improving the coefficient of performance (COP) of the booster system. When operating in the transcritical conditions, the COP values can be improved by 6.35% at the IHX thermal effectiveness of 0.8 and by 6.48% at the ratio of medium temperature load to low temperature load of 6. Using IHX can significantly reduce the compressor discharge pressure, which can be reduced by 0.55 MPa at the ambient temperature of 40 degrees C. Furthermore, by adding IHX, the annual performance factor of CO2 system can be improved significantly by 1.68% and the annual total power consumption can be decreased by 6.48% in the tropical climate. It can be concluded that IHX can improve the COP values of a booster system when operating in the subtropical and tropical regions. 
  •  
8.
  • Wang, Jiahao, et al. (författare)
  • Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process
  • 2023
  • Ingår i: International Journal of Minerals, Metallurgy and Materials. - : Springer Nature. - 1674-4799 .- 1869-103X. ; 30:5, s. 844-856
  • Tidskriftsartikel (refereegranskat)abstract
    • A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow, circulation flow rate, and mixing time during Ruhrstahl-Heraeus (RH) refining process. Also, a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up, and measurements were carried out to validate the mathematical model. The results show that, with a conventional gas blowing nozzle and the total gas flow rate of 40 L center dot min(-1), the mixing time predicted by the mathematical model agrees well with the measured values. The deviations between the model predictions and the measured values are in the range of about 1.3%-7.3% at the selected three monitoring locations, where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value. In addition, the circulation flow rate was 9 kg center dot s(-1). When the gas blowing nozzle was horizontally rotated by either 30 degrees or 45 degrees, the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle, due to the rotational flow formed in the up-snorkel. Furthermore, the mixing time at the monitoring point 1, 2, and 3 was shortened by around 21.3%, 28.2%, and 12.3%, respectively. With the nozzle angle of 30 degrees and 45 degrees, the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
  •  
9.
  • Wang, Junbo, et al. (författare)
  • Influence of Molecular Configurations on the Desulfonylation Reactions on Metal Surfaces
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 144:47, s. 21596-21605
  • Tidskriftsartikel (refereegranskat)abstract
    • On-surface synthesis is a powerful methodology for the fabrication of low-dimensional functional materials. The precursor molecules usually anchor on different metal surfaces via similar configurations. The activation energies are therefore solely determined by the chemical activity of the respective metal surfaces. Here, we studied the influence of the detailed adsorption configuration on the activation energy on different metal surfaces. We systematically studied the desulfonylation homocoupling for a molecular precursor on Au(111) and Ag(111) and found that the activation energy is lower on inert Au(111) than on Ag(111). Combining scanning tunneling microscopy observations, synchrotron radiation photoemission spectroscopy measurements, and density functional theory calculations, we elucidate that the phenomenon arises from different molecule-substrate interactions. The molecular precursors anchor on Au(111) via Au-S interactions, which lead to weakening of the phenyl-S bonds. On the other hand, the molecular precursors anchor on Ag(111) via Ag-O interactions, resulting in the lifting of the S atoms. As a consequence, the activation barrier of the desulfonylation reactions is higher on Ag(111), although silver is generally more chemically active than gold. Our study not only reports a new type of on-surface chemical reaction but also clarifies the influence of detailed adsorption configurations on specific on-surface chemical reactions.
  •  
10.
  • Wang, Jiahao, et al. (författare)
  • Study on Multiphase Flow Characteristics During RH Refining Process Affected by Nonradial Arrangement of Gas-Blowing Nozzle
  • 2023
  • Ingår i: Steel Research International. - : Wiley. - 1611-3683 .- 1869-344X. ; 94:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Bath stirring, degassing, and decarburization in steel refining are strongly related to flow behaviors. The bubble plume produced in Ruhrstahl–Heraeus (RH) up-snorkel plays an important role during refining, since it not only acts as a bubble pump, but also provides the reaction interface. Herein, it is aimed to form a new flow pattern in the up-snorkel by using a nonradially arranged gas-injection nozzle to enhance the 260 ton RH refining process. The results show that an upward spiral steel flow is produced, when nonradial gas-injection nozzles are used in the up-snorkel. Meanwhile, some bubbles moved toward the center region of the up-snorkel, which may be caused by the centripetal effect in a rotational steel flow. This leads to a more uniform bubble distribution on the cross section of the snorkel, compared to that of the conventional case. Specifically, the circulation flow rate is increased by about 18.0%, and the mixing time are shortened by about 26.2% (criteria of ±5%), compared to that of the conventional case. In addition, the inclusion removal rate is increased by 0.5%, 4.8%, and 11.3% for the inclusion size of 20, 50, and 100 μm, respectively, compared to the conventional radial nozzle case.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy