SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Jianlong) "

Sökning: WFRF:(Li Jianlong)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
2.
  • Kristan, Matej, et al. (författare)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • Ingår i: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
3.
  • Wang, Gang, et al. (författare)
  • Tumour extracellular vesicles and particles induce liver metabolic dysfunction
  • 2023
  • Ingår i: Nature. - : NATURE PORTFOLIO. - 0028-0836 .- 1476-4687. ; 618:7964, s. 374-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer alters the function of multiple organs beyond those targeted by metastasis(1,2). Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.
  •  
4.
  • Cai, Yunhao, et al. (författare)
  • Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:39, s. 43984-43991
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy offset, considered as the driving force for charge transfer between organic molecules, has significant effects on both charge separation and charge recombination in organic solar cells. Herein, we designed material systems with gradually shifting energy offsets, including both positive and negative values. Time-resolved spectroscopy was used to monitor the charge dynamics within the bulk heterojunction. It is striking to find that there is still charge transfer and charge generation when the energy offset reached -0.10 eV (ultraviolet photoelectron spectroscopy data). This work not only indicates the feasibility of the free carrier generation and the following charge separation under the condition of a negative offset but also elucidates the relationship between the charge transfer and the energy offset in the case of polymer chlorination.
  •  
5.
  • Qin, Linqing, et al. (författare)
  • Triplet Acceptors with a D-A Structure and Twisted Conformation for Efficient Organic Solar Cells
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:35, s. 15043-15049
  • Tidskriftsartikel (refereegranskat)abstract
    • Triplet acceptors have been developed to construct high-performance organic solar cells (OSCs) as the long lifetime and diffusion range of triplet excitons may dissociate into free charges instead of net recombination when the energy levels of the lowest triplet state (T-1) are close to those of charge-transfer states ((CT)-C-3). The current triplet acceptors were designed by introducing heavy atoms to enhance the intersystem crossing, limiting their applications. Herein, two twisted acceptors without heavy atoms, analogues of Y6, constructed with large pi-conjugated core and D-A structure, were confirmed to be triplet materials, leading to high-performance OSCs. The mechanism of triplet excitons were investigated to show that the twisted and D-A structures result in large spin-orbit coupling (SOC) and small energy gap between the singlet and triplet states, and thus efficient intersystem crossing. Moreover, the energy level of T-1 is close to (CT)-C-3, facilitating the split of triplet exciton to free charges.
  •  
6.
  • Wang, Ji, et al. (författare)
  • Microstructure investigations of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy under Fe ions irradiation
  • 2021
  • Ingår i: Journal of Nuclear Materials. - : ELSEVIER. - 0022-3115 .- 1873-4820. ; 552
  • Tidskriftsartikel (refereegranskat)abstract
    • An Fe50Mn30Co10Cr10 dual-phase high-entropy alloy (DP-HEA) was irradiated at room temperature with 3 MeV Fe ions to a dose of 50 displacement per atom (dpa). Potentials of special elemental designed DP-HEAs with low stacking fault energy (SFE) as promising candidate materials for future nuclear energy systems are evaluated. Transmission electron microscopy (TEM) analysis finds that FCC gamma-gamma, HCP epsilon-epsilon twinning structures and FCC gamma-HCP epsilon co-existed structures of the DP-HEA, which correlate with the combined high strength and high ductility featured by this alloy, remain stable under a displacement damage of 50 dpa. No elemental segregation after irradiation was detected by energy dispersive spectroscopy. The results indicate that TWIP and TRIP mechanisms, owned by many other DP-HEAs, may still work effectively, and the materials still possess the merits of combined high strength and ductility brought by TWIP and TRIP mechanisms under irradiation conditions. Defects free channels (DFCs) and abundant Lomer-Cottrell (L-C) locks are observed in the irradiated samples after tensile deformation. The immobile L-C locks restrict DFCs growth, prevent the pile-up of dislocation along grain boundaries, thus sustaining dislocations in the grain interior. This study provides a new strategy to improve simultaneously the irradiation resistance and mechanical properties of structural materials by introducing the TWIP and TRIP mechanisms. (C) 2021 Elsevier B.V. All rights reserved.
  •  
7.
  • Wang, Ji, et al. (författare)
  • Xe-ion-irradiation-induced structural transitions and elemental diffusion in high-entropy alloy and nitride thin-film multilayers
  • 2022
  • Ingår i: Materials & design. - : Elsevier Science Ltd. - 0264-1275 .- 1873-4197. ; 219
  • Tidskriftsartikel (refereegranskat)abstract
    • The study aims to understand the irradiation behavior of multilayer coatings composed of high-entropy materials. Here, we report the structural stability and elemental segregation of high-entropy TiNbZrTa/CrFeCoNi metallic and nitride multilayer coatings under 3-MeV Xe20+ ion-irradiation at room temperature and 500 degrees C, respectively. Transmission electron microscopy analysis shows that the microstructure of nanocrystalline CrFeCoNi high-entropy-alloy sublayers are not stable and readily transforms into amorphous state at 500 degrees C and/or under irradiation conditions. The elemental distribution, acquired by energy-dispersive X-ray spectroscopy under scanning transmission electron microscopy mode, shows preferential diffusion of Co and Ni into TiNbZrTa sublayers, while Fe and Cr preferentially remain within the previous CrFeCoNi sublayers. TiNbZrTaN/CrFeCoNiNx nitride multilayers exhibit a higher crystallinity and structural stability as well as resistance to diffusion at high-temperature and/or irradiation conditions than their TiNbZrTa/CrFeCoNi metallic multilayer counterparts. These findings are explained by atomic size differences, the difference in Gibbs free energy of the mixing system, and interstitial-solute-induced chemical heterogeneity. Our findings thus provide a design strategy of high entropy nitride for nuclear fuel cladding. (C) 2022 The Author(s). Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy