SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Lanjuan) "

Sökning: WFRF:(Li Lanjuan)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fei, Yiqiu, et al. (författare)
  • The Role of Dihydroresveratrol in Enhancing the Synergistic Effect of Ligilactobacillus salivarius Li01 and Resveratrol in Ameliorating Colitis in Mice
  • 2022
  • Ingår i: Research. - : American Association for the Advancement of Science (AAAS). - 2096-5168 .- 2639-5274. ; 2022
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently approved therapeutical strategies for inflammatory bowel diseases (IBD) suffer from variable efficacy and association with risk of serious side effects. Therefore, efforts have been made in searching for alternative therapeutics strategies utilizing gut microbiota manipulation. In this study, we show that the probiotic strain Ligilactobacillus salivarius Li01 (Li01) and the phytochemical prebiotic resveratrol (RSV) have synergistic effect in ameliorating colitis in mice. Oral coadministration of Li01 (10(9) CFU/d) and RSV (1.5 g/kg/d) promoted restoration of various inflammatory injuries and gut microbiota composition, exhibiting a favorable anti-inflammatory effect in DSS-induced colitis mice. The combination treatment was associated with reductions in the levels of proinflammatory cytokines IL-1 beta and IL-6 and increases in the levels of the anti-inflammatory cytokine IL-17A in mouse serum. Moreover, the combination treatment was found to alter the composition and metabolism of the gut microbiota, especially influencing the production of short chain fatty acids and anti-inflammatory related molecules. The mechanism underlying the improved anti-inflammatory effect from the RSV and Li01 combination treatment was found to be associated with the environmental sensor mammalian aryl hydrocarbon receptor (AHR) and tryptophan metabolism pathway. Administration of RSV in combination with Li01 in different mouse model led to enhanced conversion of RSV into metabolites, including dihydroresveratrol (DHR), resveratrol-sulfate, and resveratrol-glucuronide. DHR was found to be the dominant metabolite of RSV in conventional and colitis mice. An increased DHR/RSV ratio was confirmed to activate AHR and contribute to an enhanced anti-inflammatory effect. DHR is considered as a potential AHR ligand. The DHR/RSV ratio also affected the serotonin pathway by controlling the expression of Tph1, SERT, and 5-HT7R leading to amelioration of colitis in mice. Our data suggest that treatment with a combination of Li01 and RSV has potential as a therapeutic strategy for IBD; further investigation of this combination in clinical settings is warranted.
  •  
2.
  • Yao, Mingfei, et al. (författare)
  • Gut Microbiota Composition in Relation to the Metabolism of Oral Administrated Resveratrol
  • 2022
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Resveratrol (RSV) has been confirmed to confer multiple health benefits, and the majority of RSV tends to be metabolized in the gut microbiota after oral administration. In this study, the metabolism of RSV was investigated by using mouse models with distinct gut microbiota compositions: germ-free mice colonized with probiotics, conventional mouse, and DSS-induced colitis mouse models. The results demonstrated that in feces, the metabolites of RSV, including resveratrol sulfate (RES-sulfate), resveratrol glucuronide (RES-glucuronide), and dihydroresveratrol, significantly increased after probiotics colonized in germ-free mice. Furthermore, RES-sulfate and RES-glucuronide were below the detectable limit in the feces of conventional mice, with dihydroresveratrol being the dominant metabolite. Compared to the conventional mice, the ratio of Firmicutes/Bacteroides and the abundance of Lactobacillus genera were found significantly elevated in colitis mice after long-term ingestion of RSV, which shifted the metabolism of RSV in return. Our study provided critical implications in further application of RSV in foods and food supplements.
  •  
3.
  • Fei, Yiqiu, et al. (författare)
  • Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota
  • 2023
  • Ingår i: Critical reviews in food science and nutrition. - : TAYLOR & FRANCIS INC. - 1040-8398 .- 1549-7852. ; 63:8, s. 1037-1054
  • Forskningsöversikt (refereegranskat)abstract
    • With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.
  •  
4.
  • Han, Shengyi, et al. (författare)
  • Probiotic Gastrointestinal Transit and Colonization After Oral Administration : A Long Journey
  • 2021
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media S.A.. - 2235-2988. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
  •  
5.
  • Lu, Yanmeng, et al. (författare)
  • The role of probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal conditions
  • 2022
  • Ingår i: CURRENT RESEARCH IN FOOD SCIENCE. - : ELSEVIER. - 2665-9271. ; 5, s. 581-589
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of exopolysaccharides (EPS), a type of biomacromolecules, on the surface of probiotics play an important role in mucoadhesion, and it can be severely influenced by environments during gastrointestinal transit. In this study, the impact of gastrointestinal factors on surface properties of two probiotics (Lactobacillus rhamnosus GG and Pediococcus pentosaceus LI05) was investigated. Probiotic suspensions had relatively high viscosities and exhibited pronounced shear-thinning behavior due to the presence of EPS. The zeta-potential of both probiotics was relatively low and was not believed to play an important role in mucoadhesion. Compared to the control, the adhesive forces tended to decrease in the presence of gastric acids but increase in the presence of bile salts, since bile salts led to a thicker more open EPS layer compared to gastric acids. Although the functional groups of EPS in both probiotics are similar according to the study by FT-IR spectroscopy, the molecular weight of purified EPS in LI05 was much higher, ranging from 10,112 Da to 477,763 Da, which may contribute to higher rupture length in LI05 group. These results suggest that probiotic-mucin interactions are governed by the compositions and changes in the EPS of the probiotics in different gastrointestinal conditions, which contribute to a better understanding of the mucoadhesive behavior of the probiotics in the GIT.
  •  
6.
  • Qiu, Bo, et al. (författare)
  • Enhanced gut microbiota delivery of a model probiotic (Faecalibacterium prausnitzii) : Layer-by-layer encapsulation using riboflavin-conjugated sodium alginate and glycol chitosan
  • 2024
  • Ingår i: Food Hydrocolloids. - : Elsevier. - 0268-005X .- 1873-7137. ; 154
  • Tidskriftsartikel (refereegranskat)abstract
    • Faecalibacterium prausnitzii (F. prausnitzii) exhibits a variety of biological functions that make it suitable for use as a next-generation probiotic. However, its high sensitivity to oxygen and digestive fluids currently limits its application. Riboflavin is known to support the growth of F. prausnitzii in oxygen environments, but it is important that it is in close proximity to the probiotics. Layer-by-layer assembly can be used to form protective coatings around probiotics, which can protect them from adverse environmental conditions. Moreover, riboflavin can be conjugated to these coatings, thereby increasing its efficacy by bringing it close to probiotic surfaces. In this study, we therefore evaluated the potential of electrostatic layer-by-layer assembly to protect F. prausnitzii by coating them with riboflavin-alginate and glycol-chitosan layers. Initially, we showed that riboflavin could be successfully conjugated to alginate, with a grafting ratio of around 4.35%. Then, the layer-by-layer method was used to coat F. prausnitzii using cationic glycol chitosan and anionic riboflavin-alginate. The coating formed was found to have a thickness of approximately 18.5 nm. Encapsulation did not adversely affect the growth of F. prausnitzii, but it significantly enhanced its resistance to oxygen and digestive fluids. The encapsulated probiotic was shown to have enhanced mucoadhesive properties using an in vitro intestinal monolayer model. Furthermore, the encapsulated probiotics colonized the colons of rats for longer than nonencapsulated ones. These results show that coating F. prausnitzii with riboflavin-rich biopolymer layers improves its resistance to oxygen and digestive fluids, and enhances its mucoadhesion and colonization properties, which should enhance its potential as an orally administered probiotic.
  •  
7.
  • Qiu, Bo, et al. (författare)
  • Prevention of Loperamide-Induced Constipation in Mice and Alteration of 5-Hydroxytryotamine Signaling by Ligilactobacillus salivarius Li01
  • 2022
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 14:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Although Ligilactobacillus salivarius Li01 (Li01) has shown much promise in preventing multiple gastrointestinal diseases, the potential of the probiotic in alleviating constipation and the related mechanisms remain unclear. In this study, the effects of Li01 were evaluated in a loperamide-induced constipation mouse model. The results demonstrated that Li01 intervention can relieve constipation symptoms by improving water content, quantity, and morphology of feces and act as an intestinal barrier structure protector. Furthermore, Li01 can modulate gut motility (gastrointestinal transit rate), the fluid transit-associated expression of aquaporins, and the serum parameters vasoactive intestinal peptide, substance P, and somatostatin. Constipation significantly increased the levels of 5-hydroxytryotamine (5-HT) in serum (p < 0.01) and decreased the levels in the intestine (p < 0.001). Due to its function of elevating the expression of tryptophan hydroxylase 1, this was reversed after Li01 treatment. Li01 also promoted the expression of 5-HT receptor 3 and 4, indicating that the 5-HT signaling pathway may play a critical role in the mechanism by which Li01 alleviate constipation symptoms. Additionally, Li01 significantly altered the gut microbiota composition by enhancing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of Rikenellaceae_RC9 genera. Based on the above results, Li01 may have the potential to effectively alleviate constipation by regulating the 5-HT pathway and alteration of the gut microbiota.
  •  
8.
  • Yao, Mingfei, et al. (författare)
  • An Update on the Efficacy and Functionality of Probiotics for the Treatment of Non-Alcoholic Fatty Liver Disease
  • 2021
  • Ingår i: Engineering. - : Elsevier. - 2095-8099. ; 7:5, s. 679-686
  • Forskningsöversikt (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD), which has a global prevalence of 20%-33%, has become the main cause of chronic liver disease. Except for lifestyle medication, no definitive medical treatment has been established so far, making it urgent to find effective strategies for the treatment of NAFLD. With the identification of the significant role played by the gut microbiota in the pathogenesis of NAFLD, studies on probiotics for the prevention and treatment of NAFLD are increasing in number. Bacteria from the Bifidobacterium and Lactobacillus genera constitute the most widely used traditional probiotics. More recently, emerging next-generation probiotics (NGPs) such as Akkermansia muciniphila and Faecalibacterium prausnitzii have also gained attention due to their potential as therapeutic options for the treatment of NAFLD. This review provides an overview of the effects of oral administration of traditional probiotics and NGPs on the development and progress of NAFLD. The mechanisms by which probiotics directly or indirectly affect the disease are illustrated, based on the most recent animal and clinical studies. Although numerous studies have been published on this topic, further research is required to comprehensively understand the specific underlying mechanisms among probiotics, gut microbiota, and NAFLD, and additional large-scale clinical trials are required to evaluate the therapeutic efficacy of probiotics for the treatment of NAFLD, as well as the safety of probiotics in the human body. (C) 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
  •  
9.
  • Yao, Mingfei, et al. (författare)
  • Improved functionality of Ligilactobacillus salivarius Li01 in alleviating colonic inflammation by layer-by-layer microencapsulation
  • 2021
  • Ingår i: npj Biofilms and Microbiomes. - : Nature Research. - 2055-5008. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The low viability during gastrointestinal transit and poor mucoadhesion considerably limits the effectiveness of Ligilactobacillus salivarius Li01 (Li01) in regulating gut microbiota and alleviating inflammatory bowel disease (IBD). In this study, a delivery system was designed through layer-by-layer (LbL) encapsulating a single Li01cell with chitosan and alginate. The layers were strengthened by cross-linking to form a firm and mucoadhesive shell (similar to 10 nm thickness) covering the bacterial cell. The LbL Li01 displayed improved viability under simulated gastrointestinal conditions and mucoadhesive function. Almost no cells could be detected among the free Li01 after 2 h incubation in digestive fluids, while for LbL Li01, the total reduction was around 3 log CFU/mL and the viable number of cells remained above 6 log CFU/mL. Besides, a 5-fold increase in the value of rupture length and a two-fold increase in the number of peaks were found in the (bacteria-mucin) adhesion curves of LbL Li01, compared to those of free Li01. Oral administration with LbL Li01 on colitis mice facilitated intestinal barrier recovery and restoration of the gut microbiota. The improved functionality of Li01 by LbL encapsulation could increase the potential for the probiotic to be used in clinical applications to treat IBD; this should be explored in future studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy