SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Yanxue) "

Sökning: WFRF:(Li Yanxue)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Ming, et al. (författare)
  • Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly
  • 2020
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:3, s. 314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosystem I (PSI) is able to form different oligomeric states across various species. To reveal the structural basis for PSI dimerization and tetramerization, we structurally investigated PSI from the cyanobacterium Anabaena. This revealed a disrupted trimerization domain due to lack of the terminal residues of PsaL in the lumen, which resulted in PSI dimers with loose connections between monomers and weaker energy-coupled chlorophylls than in the trimer. At the dimer surface, specific phospholipids, cofactors and interactions in combination facilitated recruitment of another dimer to form a tetramer. Taken together, the relaxed luminal connections and lipid specificity at the dimer interface account for membrane curvature. PSI tetramer assembly appears to increase the surface area of the thylakoid membrane, which would contribute to PSI crowding. Photosystem I from the cyanobacterium Anabaena has a disrupted trimerization domain resulting in dimers with loose connections between monomers. Phospholipids and cofactors at the dimer surface facilitate further dimerization to form a tetramer.
  •  
2.
  • Sun, Mengtao, et al. (författare)
  • Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide
  • 2011
  • Ingår i: Plasmonics. - : Springer Science and Business Media LLC. - 1557-1963 .- 1557-1955. ; 6:4, s. 681-687
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, we report remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Remote excitation polarization-dependent surface-enhanced Raman scattering (SERS) spectra indicate a surface photochemical reaction that p-aminothiophenol is converted to p,p'-dimercaptoazobenzene (DMAB) induced by the plasmonic waveguide. Surface plasmon polaritons generated at the end of a silver nanowire can propagate efficiently along the nanowire, and be coupled by nanoparticles near the nanowire as a nanoantenna. Massive electromagnetic enhancement is generated in the nanogap between the nanowire and the nanoparticles. The remote excitation polarization-dependent SERS spectra can be obtained experimentally in the nanogaps; furthermore, the remote excitation polarization-dependent SERS spectra of DMAB reveal the occurrence of this surface catalytic reaction. Theoretical simulations using finite-difference time-domain methods strongly support our experimental results.
  •  
3.
  • Zhai, Panlong, et al. (författare)
  • Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational design of the catalysts is impressive for sustainable energy conversion. However, there is a grand challenge to engineer active sites at the interface. Herein, hierarchical transition bimetal oxides/sulfides heterostructure arrays interacting two-dimensional MoOx/MoS2 nanosheets attached to one-dimensional NiOx/Ni3S2 nanorods were fabricated by oxidation/hydrogenation-induced surface reconfiguration strategy. The NiMoOx/NiMoS heterostructure array exhibits the overpotentials of 38mV for hydrogen evolution and 186mV for oxygen evolution at 10mAcm(-2), even surviving at a large current density of 500mAcm(-2) with long-term stability. Due to optimized adsorption energies and accelerated water splitting kinetics by theory calculations, the assembled two-electrode cell delivers the industrially relevant current densities of 500 and 1000mAcm(-2) at record low cell voltages of 1.60 and 1.66V with excellent durability. This research provides a promising avenue to enhance the electrocatalytic performance of the catalysts by engineering interfacial active sites toward large-scale water splitting. While water splitting is an appealing carbon-neutral strategy for renewable energy generation, there is a need to develop new active, cost-effective catalysts. Here, authors prepare a nickel-molybdenum oxide/sulfide heterojunctions as bifunctional H-2 and O-2 evolution electrocatalysts.
  •  
4.
  • Zhang, Xiaomeng, et al. (författare)
  • Engineering Single-Atomic Ni-N-4-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:49, s. 20657-20669
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct photoelectrochemical (PEC) water splitting is a promising solution for solar energy conversion; however, there is a pressing bottleneck to address the intrinsic charge transport for the enhancement of PEC performance. Herein, a versatile coupling strategy was developed to engineer atomically dispersed Ni-N-4 sites coordinated with an axial direction oxygen atom (Ni-N-4-O) incorporated between oxygen evolution cocatalyst (OEC) and semiconductor photoanode, boosting the photogenerated electron-hole separation and thus improving PEC activity. This state-ofthe-art OEC/Ni-N-4-O/BiVO4 photoanode exhibits a record high photo-current density of 6.0 mA cm(-2) at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 3.97 times larger than that of BiVO4, achieving outstanding long-term photostability. From X- ray absorption fine structure analysis and density functional theory calculations, the enhanced PEC performance is attributed to the construction of single-atomic Ni-N-4-O moiety in OEC/BiVO4, facilitating the holes transfer, decreasing the free energy barriers, and accelerating the reaction kinetics. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes for feasible PEC water splitting application.
  •  
5.
  • Zhang, Yanting, et al. (författare)
  • Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:11, s. 17820-17830
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct nitrogen photofixation is a feasible solution toward sustainable production of ammonia under mild conditions. However, the generation of active sites for solar-dirven nitrogen fixation not only limits the fundamental understanding of the relationship among light absorption, charge transfer, and catalytic efficiency but also influences the photocatalytic activity. Herein, we report two-dimensional boron-doped niobic acid nanosheets with oxygen vacancies (B-V-o-HNbO3 NSs) for efficient N-2 photofixation in the absence of any scavengers and cocatalysts. Impressively, B-V-o-HNbO3 NS as a model catalyst achieves the enhanced ammonia evolution rate of 170 mu mol g(cat)(-1) h(-1) in pure water under visible-light irradiation. The doublet coupling representing (NH4+)-N-15 in an isotopic labeling experiment and in situ infrared spectra confirm the reliable ammonia generation. The experimental analysis and density functional theory (DFT) calculations indicate that the strong synergy of boron dopant and oxygen vacancy regulates band structure of niobic acid, facilitates photogenerated charge transfer, reduces free energy barriers, accelerates reaction kinetics, and promotes the high rates of ammonia evolution. This work provides a general strategy to design active photocatalysts toward solar N-2 conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy