SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Yaqiong) "

Search: WFRF:(Li Yaqiong)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
2.
  • Li, Yaqiong, et al. (author)
  • Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris
  • 2016
  • In: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1857:1, s. 107-114
  • Journal article (peer-reviewed)abstract
    • Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 angstrom with two alpha/beta allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.
  •  
3.
  • McCarrick, Heather, et al. (author)
  • The Simons Observatory Microwave SQUID Multiplexing Detector Module Design
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:1
  • Journal article (peer-reviewed)abstract
    • Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μmux). Simons Observatory will use 49 modules containing 70,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA √Hz . This impacts the projected SO mapping speed by <8%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
  •  
4.
  •  
5.
  • Wang, Yaqiong, et al. (author)
  • Domain Wall Free Polar Structure Enhanced Photodegradation Activity in Nanoscale Ferroelectric BaxSr1-xTiO3
  • 2020
  • In: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:38
  • Journal article (peer-reviewed)abstract
    • Ferroelectric materials exhibit anomalous behavior due to the presence of domains and domain walls which are related to the spontaneous polarization inherent in the crystal structure. Control of ferroelectric domains and domain walls has been used to enhance device performances in ultrasound, pyroelectric detectors, and photovoltaic systems with renewed interest in nanostructuring for energy applications. It is also known that ferroelectrics including domain walls can double photocatalytic rate and increase carrier lifetime from microsecond to millisecond. However, there remains a lack of understanding on the different contributions of the domain and domain walls to photocatalytic activities. Herein it is found, by comparing samples of nanostructured Ba(x)Sr(1-)(x)TiO(3)with and without a polar domain, that the material with polar domains has a faster reaction rate (k= 0.18 min(-1)) than the nonpolar one (k= 0.11 min(-1)). It is further revealed that the observed enhanced photoactivity of perovskite ferroelectric materials stems from the inherent polarization of the domain instead of domain walls. Here, the new understanding of the underlying physics of materials with a spontaneous dipole opens a door to enhance the performance of light induced energy harvesting systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view