SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Yuecong) "

Sökning: WFRF:(Li Yuecong)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sun, Yuanhao, et al. (författare)
  • Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China : An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach
  • 2022
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier. - 0341-8162 .- 1872-6887. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil pollen data are essential for reconstructing ancient vegetation and land-cover changes. Sugita's REVEALS model is the best method to estimate regional plant cover (in percentage cover) using pollen data from lakes. Such reconstructions imply that the sum of all plants' cover is 100%. However, land cover is not always represented by vegetation alone, the area of bare ground can be significant in many types of biomes, e.g., in alpine or steppe regions. Here we define "total land cover " as the sum of vegetation cover (VegC) and bare ground (BareC). In this study, we use the relationship between tree pollen percentages and both tree cover (TreeC) and VegC (=TreeC + herb cover (HerbC)) based on a dataset of modern pollen assemblages and related total land cover. This relationship is applied to estimate past "actual " vegetation cover (a-VegC) from fossil pollen percentages using the Modern Analogue Technique (MAT). The REVEALS (RV) model can then be applied to the same fossil pollen records to estimate regional cover of individual plant taxa (RV PlantC; e.g., RV PinusC, etc.), total tree cover (RV-TreeC) and total herb cover (RV-HerbC). These cover values can then be converted into RV aPlantC, RV a-TreeC and RV a-HerbC using the MAT-reconstructed a-VegC (e.g., RV PinusC x MAT a-VegC = RV aPinusC; RV-TreeC x MAT a-VegC = RV a-TreeC, etc.). The results of leave-one-out cross-validation indicates that the MAT reconstructions using the modern pollen assemblages provide values of a-TreeC, a-HerbC and BareC mostly very similar to the modern vegetation data. We further tested the method using pollen assemblages from lake surface sediments of 11 lakes and the results also suggest a good performance of MAT-based reconstruction. We then applied the proposed method (MAT-REVEALS) to four Holocene pollen records available from the study area to evaluate the feasibility of the strategy to reconstruct past actual plant cover. The results suggest that the method provides plausible estimates of vegetation cover for the sub-regions within the study area. The results from Lake Daihai over the last 10,000 years BP are interpreted and discussed in more details to evaluate the effects of possible departures from the approach assumptions.
  •  
2.
  • Li, Furong, et al. (författare)
  • A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction of Past Plant Cover
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Model-based quantitative reconstruction of past plant cover in Europe has shown great potential for: (i) testing hypotheses related to Holocene vegetation dynamics, biodiversity, and their relationships with climate and land use; (ii) studying long term interactions between climate and land use. Similar model-based quantitative reconstruction of plant cover in China has been restricted due to the lack of standardized datasets of existing estimates of relative pollen productivity (RPP). This study presents the first synthesis of all RPP values available to date for 39 major plant taxa from temperate China and proposes standardized RPP datasets that can be used for model-based quantitative reconstructions of past plant cover using fossil pollen records for the region. We review 11 RPP studies in temperate China based on modern pollen and related vegetation data around the pollen samples. The study areas include meadow, steppe and desert vegetation, various woodland types, and cultural landscapes. We evaluate the strategies of each study in terms of selection of study areas and distribution of study sites; pollen- and vegetation-data collection in field; vegetation-data collection from satellite images and vegetation maps; and data analysis. We compare all available RPP estimates, select values based on precise rules and calculate mean RPP estimates. We propose two standardized RPP datasets for 31 (Alt1) and 29 (Alt2) plant taxa. The ranking of mean RPPs (Alt-2) relative to Poaceae (= 1) for eight major taxa is: Artemisia (21) > Pinus (18.4) > Betula (12.5) > Castanea (11.5) > Elaeagnaceae (8.8) > Juglans (7.5) > Compositae (4.5) > Amaranthaceae/Chenopodiaceae (4). We conclude that although RPPs are comparable between Europe and China for some genera and families, they can differ very significantly, e.g., Artemisia, Compositae, and Amaranthaceae/Chenopodiaceae. For some taxa, we present the first RPP estimates e.g. Castanea, Elaeagnaceae, and Juglans. The proposed standardized RPP datasets are essential for model-based reconstructions of past plant cover using fossil pollen records from temperate China.
  •  
3.
  • Li, Furong, et al. (författare)
  • Towards quantification of Holocene anthropogenic land-cover change in temperate China : A review in the light of pollen-based REVEALS reconstructions of regional plant cover
  • 2020
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 203, s. 1-25
  • Forskningsöversikt (refereegranskat)abstract
    • In an attempt to quantify Holocene anthropogenic land-cover change in temperate China, we 1) applied the REVEALS model to estimate plant-cover change using 94 pollen records and relative pollen productivity for 27 plant taxa, 2) reviewed earlier interpretation of pollen studies in terms of climate- and human-induced vegetation change, and 3) reviewed information on past land use from archaeological studies. REVEALS achieved a more realistic reconstruction of plant-cover change than pollen percentages in terms of openland versus woodland. The study suggests successive human-induced changes in vegetation cover. The first signs of human-induced land-cover change (crop cultivation, otherwise specified) are found c. 7 ka BP in the temperate deciduous forest, and S and NE Tibetan Plateau (mainly grazing, possibly crop cultivation), 6.5-6 ka BP in the temperate steppe and temperate desert (grazing, uncertain), and 5.5-5 ka BP in the coniferous-deciduous mixed forest, NE subtropical region, and NW Tibetan Plateau (grazing). Further intensification of anthropogenic land-cover change is indicated 5-4.5 ka BP in the E temperate steppe, and S and NE Tibetan Plateau (grazing, cultivation uncertain), 3.5-3 ka BP in S and NE Tibetan Plateau, W temperate steppe, temperate desert (grazing), and NW Tibetan Plateau (probably grazing), and 2.5-2 ka BP in the temperate deciduous forest, N subtropical region, and temperate desert (grazing). These changes generally agree with increased human activity as documented by archaeological studies. REVEALS reconstructions have a stronger potential than biomization to evaluate scenarios of anthropogenic land-cover change such as HYDE, given they are combined with information from archaeological studies.
  •  
4.
  • Li, Jianyong, et al. (författare)
  • Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China-a first step towards quantitative reconstruction of human-induced land cover changes
  • 2013
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 22:6, s. 463-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of the modern relationship between pollen, vegetation and land-use are essential to infer past human impact on vegetation from pollen records. Nevertheless, such investigations are relatively few in China. We present here a study of pollen assemblages from sediment samples collected from irrigation pools in the Tuoliang and Qipanshan catchments in northern China. Pollen and spores from natural vegetation such as Artemisia, Chenopodiaceae, Pinus and Selaginella sinensis dominate the pollen assemblages, while pollen types which could be from crops such as cereals, Brassicaceae, Fabaceae, Solanaceae, Apiaceae and Cucurbitaceae are common but not abundant. Pollen percentages of Artemisia and Chenopodiaceae become less with decreasing altitude, while Pinus and S. sinensis percentages increase, indicating that saccate Pinus pollen and S. sinensis spores are transported further than non-saccate Artemisia and Chenopodiaceae pollen, and differential sorting of pollen is occurring during transport in river water. Proportions of pollen from farmland and crops increase with decreasing altitude, showing that pollen percentages of crops might be a good indicator of the extent of farmland. A linear correlation analysis between pollen percentages and vegetation proportions shows that pollen percentages of crops are positively correlated with proportions of farmland, while correlation between pollen percentages of trees, shrubs and herbs and proportions of woodland, scrubland and grassland respectively is poor. This study indicates that the relationship between pollen percentages and vegetation proportions can be explained by the differences of pollen productivity, dispersal and deposition, and might be the basis for a modelling approach to infer past vegetation cover in northern China.
  •  
5.
  • Zhang, Shengrui, et al. (författare)
  • Pollen assemblages and their environmental implications in the Qaidam Basin, NW China
  • 2012
  • Ingår i: Boreas. - : Wiley. - 1502-3885 .- 0300-9483. ; 41:4, s. 602-613
  • Tidskriftsartikel (refereegranskat)abstract
    • The Qaidam Basin is one of the most sensitive areas to climate change in China, owing to its unique geographical position and ecological condition. In this study, 32 surface-soil pollen samples were collected to reveal the relationship between modern pollen assemblages, vegetation and precipitation in the eastern region of the Qaidam Basin. The results show that Chenopodiaceae (3.887%, average 48%), Artemisia (1.764.2%, average 17.5%) and Ephedra (090%, average 16.3%) are the dominant pollen types in all samples, and that different pollen assemblages correspond to different vegetation types. DCA and CCA of major pollen types demonstrate that precipitation is an important factor in the control of the distribution of vegetation in the study area. The content and concentration of the three major pollen types (Artemisia, Chenopodiaceae and Ephedra) change with the mean annual precipitation, and the optimum mean annual precipitation for Ephedra, Chenopodiaceae and Artemisia is <80, 80200 and >160?mm, respectively. Correlation analysis between the variation in grain size of the three major pollen types and the main environmental variables shows that the grain size of the three pollen types is positively correlated with precipitation in the Qaidam Basin. The results confirm that precipitation is the most important environmental factor in the Qaidam Basin, and that it has an important effect on pollen grain size in the study area.
  •  
6.
  • Li, Furong, et al. (författare)
  • Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China
  • 2017
  • Ingår i: Vegetation History and Archaeobotany. - : Springer. - 0939-6314 .- 1617-6278. ; 26:6, s. 587-605
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we estimate relative pollen productivity (RPP) for plant taxa characteristic of human-induced vegetation in ancient cultural landscapes of the low mountain ranges of Shandong province in eastern temperate China. RPP estimates are required to achieve pollen-based reconstructions of Holocene plant cover using modelling approaches based on Prentice's and Sugita's theoretical background and models (REVEALS and LOVE). Pollen counts in moss samples and vegetation data from 36 sites were used in the Extended R-Value (ERV) model to estimate the relevant source area of pollen (RSAP) of moss polsters and RPP of major plant taxa. The best results were obtained with the ERV sub-model 3 and Prentice's taxon-specific method (using a Gaussian Plume dispersal model) to distance weight vegetation data. RSAP was estimated to 145 m using the maximum likelihood method. RPP was obtained for 18 taxa of which two taxa had unreliable RPP (Amaranthaceae/Chenopodiaceae and Vitex negundo). RPPs for Castanea, Cupressaceae, Robinia/Sophora, Aster/Anthemis-type, Cannabis/Humulus, Caryophyllaceae, Brassicaceae and Galium-type are the first ones for China. Trees, except Robinia/Sophora (RPP = 0.78 +/- 0.03) have larger RPPs than herbs other than Artemisia (RPP = 24.7 +/- 0.36). The RPPs for Quercus, Pinus and Artemisia are comparable with other RPPs obtained in China, the RPPs for Pinus, Quercus, Ulmus, Cyperaceae and Galium-type with the mean RPPs obtained in Europe, and RPP for Cupressaceae with that for Juniperus in Europe. The values for Aster/Anthemis-type, Caryophyllaceae, Asteraceae SF Cichorioideae and Juglans differ from the few RPPs available in China and/or Europe.
  •  
7.
  • Zhang, Shengrui, et al. (författare)
  • Characteristic pollen source area and vertical pollen dispersal and deposition in a mixed coniferous and deciduous broad-leaved woodland in the Changbai mountains, northeast China.
  • 2016
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 25:1, s. 29-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollen influx (number of pollen grains cm−2 year−1) can objectively reflect the dispersal and deposition features of pollen within a certain time and space, and is often used as a basis for the quantitative reconstruction of palaeovegetation; however, little is known about the features and mechanisms of vertical dispersal of pollen. Here we present the results from a 5 year (2006–2010) monitoring program using pollen traps placed at different heights from ground level up to 60 m and surface soil samples in a mixed coniferous and deciduous broad-leaved woodland in the Changbai mountains, northeastern China. The pollen percentages and pollen influx from the traps have very similar characteristics to the highest values for Betula,Fraxinus, Quercus and Pinus, among the tree taxa and Artemisia, Chenopodiaceae and Asteraceae among the herb taxa. Pollen influx values vary significantly with height and show major differences between three distinct layers, above-canopy (≥32 m), within the trunk layer (8 ≤ 32 m) and on the ground (0 m). These differences in pollen influx are explained by differences in (i) the air flows in each of these layers and (ii) the fall speed of pollen of the various taxa. We found that the pollen recorded on the ground surface is a good representation of the major part of the pollen transported in the trunk space of the woodland. Comparison of the pollen influx values with the theoretical, calculated “characteristic pollen source area” (CPSA) of 12 selected taxa indicates that the pollen deposited on the ground surface of the woodland is a fair representation with 85–90 % of the total pollen deposited at a wind speed of 2.4 m s−1 coming from within ca. 1–5 km for Pinus and Quercus, ca. 5–10 km for Ulmus, Tilia, Oleaceae and Betula, ca. 20–40 km for Fraxinus, Poaceae, Chenopodiaceae, Populus andSalix, and ca. 30–60 km for Artemisia; it is also a good representation with 90–98 % of the total pollen deposited coming from within 60 km at a wind speed of 2.4 m s−1, or 100 km at a wind speed: 6 m s−1, for the 12 selected taxa used in the CPSA calculation. Furthermore, comparison with the vegetation map of the area around the sampling site shows that the pollen deposited on the ground represents all plant communities which grow in the study area within 70 km radius of the sampling site. In this study, the pollen percentages obtained from the soil surface samples are significantly biased towards pollen taxa with good preservation due to thick and robust pollen walls. Therefore, if mosses are available instead, soil samples should be avoided for pollen studies, in particular for the study of pollen-vegetation relationships, the estimation of pollen productivities and quantitative reconstruction of past vegetation. The results also indicate that the existing model of pollen dispersal and deposition, Prentice’s model, provides a fair description of the actual pollen dispersal and deposition in this kind of woodland, which suggests that the application of the landscape reconstruction algorithm would be relevant for reconstruction of this type of woodland in the past.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy