SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Zailing) "

Sökning: WFRF:(Li Zailing)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Hanna, et al. (författare)
  • Metabolic phenotype and microbiome of infants fed formula containing Lactobacillus paracasei strain F-19
  • 2022
  • Ingår i: Frontiers in Pediatrics. - : Frontiers Media S.A.. - 2296-2360. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Early childhood nutrition drives the development of the gut microbiota. In contrast to breastfeeding, feeding infant formula has been shown to impact both the gut microbiota and the serum metabolome toward a more unfavorable state. It is thought that probiotics may alter the gut microbiota and hence create a more favorable metabolic outcome. To investigate the impact of supplementation with Lactobacillus paracasei spp. paracasei strain F-19 on the intestinal microbiota and the serum metabolome, infants were fed a formula containing L. paracasei F19 (F19) and compared to a cohort of infants fed the same standard formula without the probiotic (SF) and a breast-fed reference group (BF). The microbiome, as well as serum metabolome, were compared amongst groups. Consumption of L. paracasei F19 resulted in lower community diversity of the gut microbiome relative to the SF group that made it more similar to the BF group at the end of the intervention (4 months). It also significantly increased lactobacilli and tended to increase bifidobacteria, also making it more similar to the BF group. The dominant genus in the microbiome of all infants was Bifidobacterium throughout the intervention, which was maintained at 12 months. Although the serum metabolome of the F19 group was more similar to the group receiving the SF than the BF group, increases in serum TCA cycle intermediates and decreases in several amino acids in the metabolome of the F19 group were observed, which resulted in a metabolome that trended toward the BF group. Overall, L. paracasei F19 supplementation did not override the impact of formula-feeding but did impact the microbiome and the serum metabolome in a way that may mitigate some unfavorable metabolic impacts of formula-feeding.
  •  
2.
  • Lee, Hanna, et al. (författare)
  • Milk Fat Globule Membrane as a Modulator of Infant Metabolism and Gut Microbiota : A Formula Supplement Narrowing the Metabolic Differences between Breastfed and Formula-Fed Infants
  • 2021
  • Ingår i: Molecular Nutrition & Food Research. - : Wiley-VCH Verlagsgesellschaft. - 1613-4125 .- 1613-4133. ; 65:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope Milk fat globule membrane (MFGM) is an important component of milk that has previously been removed in the manufacture of infant formulas, but has recently gained attention owing to its potential to improve immunological, cognitive, and metabolic health. The goal of this study is to determine whether supplementing MFGM in infant formula would drive desirable changes in metabolism and gut microbiota to elicit benefits observed in prior studies. Methods and Results The serum metabolome and fecal microbiota are analyzed using H-1 NMR spectroscopy and 16S rRNA gene sequencing respectively in a cohort of Chinese infants given a standard formula or a formula supplemented with an MFGM-enriched whey protein fraction. Supplementing MFGM suppressed protein degradation pathways and the levels of insulinogenic amino acids that are typically enhanced in formula-fed infants while facilitating fatty acid oxidation and ketogenesis, a feature that may favor brain development. MFGM supplementation did not induce significant compositional changes in the fecal microbiota but suppressed microbial diversity and altered microbiota-associated metabolites. Conclusion Supplementing MFGM in a formula reduced some metabolic gaps between formula-fed and breastfed infants.
  •  
3.
  • Li, Xiaonan, et al. (författare)
  • Feeding Infants Formula With Probiotics or Milk Fat Globule Membrane : A Double-Blind, Randomized Controlled Trial
  • 2019
  • Ingår i: Frontiers in Pediatrics. - : Frontiers Media SA. - 2296-2360. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To evaluate effects on growth and infection rates of supplementing infant formula with the probiotic Lactobacillus paracasei ssp. paracasei strain F19 (F19) or bovine milk fat globule membrane (MFGM).Methods: In a double-blind, randomized controlled trial, 600 infants were randomized to a formula supplemented with F19 or MFGM, or to standard formula (SF). A breastfed group was recruited as reference (n = 200).The intervention lasted from age 21 ± 7 days until 4 months, and infants were followed until age one year.Results: Both experimental formulas were well tolerated and resulted in high compliance. The few reported adverse events were not likely related to formula, with the highest rates in the SF group, significantly higher than for the F19-supplemented infants (p = 0.046). Weight or length gain did not differ during or after the intervention among the formula-fed groups, with satisfactory growth. During the intervention, overall, the experimental formula groups did not have more episodes of diarrhea, fever, or days with fever than the breastfed infants. However, compared to the breastfed infants, the SF group had more fever episodes (p = 0.021) and days with fever (p = 0.036), but not diarrhea. Compared with the breastfed group, the F19-supplemented infants but not the other two formula groups had more visits/unscheduled hospitalizations (p = 0.015) and borderline more episodes of upper respiratory tract infections (p = 0.048).Conclusions: Both the MFGM- and F19-supplemented formulas were safe and well-tolerated, leading to few adverse effects, similar to the breastfed group and unlike the SF group. During the intervention, the MFGM-supplemented infants did not differ from the breastfed infants in any primary outcome.
  •  
4.
  • Li, Xiaonan, et al. (författare)
  • Serum cytokine patterns are modulated in infants fed formula with probiotics or milk fat globule membranes : A randomized controlled trial
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Proteins and lipids of milk fat globule membrane (MFGM) and probiotics are immunomodulatory. We hypothesized that Lactobacillus paracasei ssp. paracasei strain F19 (F19) would augment vaccine antibody and T helper 1 type immune responses whereas MFGM would produce an immune response closer to that of breastfed (BF) infants.Objective: To compare the effects of supplementing formula with F19 or bovine MFGM on serum cytokine and vaccine responses of formula-fed (FF) and BF infants.Design: FF infants were randomized to formula with F19 (n = 195) or MFGM (n = 192), or standard formula (SF) (n = 194) from age 21±7 days until 4 months. A BF group served as reference (n = 208). We analyzed seven cytokines (n = 398) in serum at age 4 months using magnetic bead-based multiplex technology. Using ELISA, we analyzed anti-diphtheria IgG (n = 258) and anti-poliovirus IgG (n = 309) concentrations in serum before and after the second and third immunization, respectively.Results: Compared with SF, the F19 group had greater IL-2 and lower IFN-γ concentrations (p<0.05, average effect size 0.14 and 0.39). Compared with BF, the F19 group had greater IL-2, IL-4 and IL-17A concentrations (p<0.05, average effect size 0.42, 0.34 and 0.26, respectively). The MFGM group had lower IL-2 and IL-17A concentrations compared with SF (p<0.05, average effect size 0.34 and 0.31). Cytokine concentrations were comparable among the MFGM and BF groups. Vaccine responses were comparable among the formula groups.Conclusions: Contrary to previous studies F19 increased IL-2 and lowered IFN-γ production, suggesting that the response to probiotics differs across populations. The cytokine profile of the MFGM group approached that of BF infants, and may be associated with the previous finding that infectious outcomes for the MFGM group in this cohort were closer to those of BF infants, as opposed to the SF group. These immunomodulatory effects support future clinical evaluation of infant formula with F19 or MFGM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy