SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Zhenhua) "

Sökning: WFRF:(Li Zhenhua)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhuang, Ting, et al. (författare)
  • SHARPIN stabilizes estrogen receptor a and promotes breast cancer cell proliferation
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:44, s. 77137-77151
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor a is expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression. In our study, we identified the novel E3 ubiquitin ligase SHARPIN function to facilitate ERα signaling. SHARPIN is highly expressed in human breast cancer and correlates with ERα protein level by immunohistochemistry. SHARPIN expression level correlates with poor prognosis in ERα positive breast cancer patients. SHARPIN depletion based RNA-sequence data shows that ERα signaling is a potential SHARPIN target. SHARPIN depletion significantly decreases ERα protein level, ERα target genes expression and estrogen response element activity in breast cancer cells, while SHARPIN overexpression could reverse these effects. SHARPIN depletion significantly decreases estrogen stimulated cell proliferation in breast cancer cells, which effect could be further rescued by ERα overexpression. Further mechanistic study reveals that SHARPIN mainly localizes in the cytosol and interacts with ERα both in the cytosol and the nuclear. SHARPIN regulates ERα signaling through protein stability, not through gene expression. SHARPIN stabilizes ERα protein via prohibiting ERα protein poly-ubiquitination. Further study shows that SHARPIN could facilitate the mono-ubiquitinaiton of ERα at K302/303 sites and facilitate ERE luciferase activity. Together, our findings propose a novel ERα modulation mechanism in supporting breast cancer cell growth, in which SHARPIN could be one suitable target for development of novel therapy for ERα positive breast cancer.
  •  
2.
  • Gu, Peng, et al. (författare)
  • A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis
  • 2023
  • Ingår i: Cellular & Molecular Immunology. - London : Nature Publishing Group. - 1672-7681 .- 2042-0226. ; 20:10, s. 1156-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development. © 2023, The Author(s), under exclusive licence to CSI and USTC.
  •  
3.
  • Huang, Luofeng, et al. (författare)
  • An investigation on the speed dependence of ice resistance using an advanced CFD+DEM approach based on pre-sawn ice tests
  • 2022
  • Ingår i: Ocean Engineering. - : Elsevier BV. - 0029-8018. ; 264
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past decades, the underlying mechanism of level ice resistance changing with ship speed has not been fully understood, particularly the resistance component due to ship interactions with broken ice pieces. Pre-sawn ice test can negate icebreaking component from the whole resistance of a ship in level ice, providing an effective approach to decompose ship-ice interactions and investigate the speed-dependent resistance from broken ice pieces. This work has built a computational model that can realistically simulate a ship advancing in a pre-sawn ice channel. The model applies Computational Fluid Dynamics (CFD) to solve the flow around an advancing ship, which is coupled with an enhanced Discrete Element Method (DEM) to model pre-sawn ice pieces. Model-scale experiments have also been conducted at the Aalto Ice Tank to validate the simulations, which shows the computational model can provide a reasonable estimation of the pre-sawn ice's resistance and movement around the ship. Upon validation, the dependence of ice resistance on ship speed was analysed. The simulations enable underwater monitoring of the ice motions, indicating that the speed dependence results from the mass of ice submerged underneath the ship and the displacement of broken ice induced by the ship. The identified relationships are more complex than the widely-used assumption that ice resistance linearly changes with ship speed in all cases, which provides a deeper understanding of ice resistance. As such, the findings from this study can potentially facilitate improvements in relevant empirical equations, useful for ship design, operational strategies and maritime management in polar regions.
  •  
4.
  • Ma, Dan, et al. (författare)
  • A global optimization-based method for the prediction of water inrush hazard from mining floor
  • 2018
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Water inrush hazards can be effectively reduced by a reasonable and accurate soft-measuring method on the water inrush quantity from the mine floor. This is quite important for safe mining. However, there is a highly nonlinear relationship between the water outburst from coal seam floors and geological structure, hydrogeology, aquifer, water pressure, water-resisting strata, mining damage, fault and other factors. Therefore, it is difficult to establish a suitable model by traditional methods to forecast the water inrush quantity from the mine floor. Modeling methods developed in other fields can provide adequate models for rock behavior on water inrush. In this study, a new forecast system, which is based on a hybrid genetic algorithm (GA) with the support vector machine (SVM) algorithm, a model structure and the related parameters are proposed simultaneously on water inrush prediction. With the advantages of powerful global optimization functions, implicit parallelism and high stability of the GA, the penalty coefficient, insensitivity coefficient and kernel function parameter of the SVM model are determined as approximately optimal automatically in the spatial dimension. All of these characteristics greatly improve the accuracy and usable range of the SVM model. Testing results show that GA has a useful ability in finding optimal parameters of a SVM model. The performance of the GA optimized SVM (GA-SVM) is superior to the SVM model. The GA-SVM enables the prediction of water inrush and provides a promising solution to the predictive problem for relevant industries.
  •  
5.
  • Ma, Dan, et al. (författare)
  • Creep-erosion coupling water inrush model of weakly cemented fault rock mass
  • 2023
  • Ingår i: Meitan Xuebao/Journal of the China Coal Society. - : China Coal Society. - 0253-9993. ; 48:6, s. 2453-2464
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to investigate the temporal-spatial evolution properties of the water inrush disaster process of weakly cemented fault rock mass, a creep-erosion coupling water inrush model of weakly cemented fault rock mass is established. This model expands the equivalent continuum seepage theory, and a creep submodel and an erosion submodel are established respectively. The proposed creep submodel fully considers the mass conversion among materials, stress-strain and strain-porosity relationships. The proposed erosion submodel fully considers the mass conservation, particle migration and non-Darcy flow laws. According to the superposition principle of the mass conservation equations and three influence relationships (i.e., porosity-effective stress, porosity-creep material coefficient and creep strain-porosity-permeability relationships), the coupling between the submodels is realized, and the governing equations of the one-dimensional radial seepage direction coupling model are given. The solution conditions of the water inrush model are set, and the numerical computation method of the model in the temporal-spatial domain is established based on the COMSOL Multiphysics. By comparing the laboratory experimental results and the model calculation results of porosity evolution, the validity of the creep-erosion coupling model of weakly cemented surrounding rock is verified. On this basis, the temporal-spatial evolution law of the creep-erosion characteristics of weakly cemented surrounding rocks of the roadway is solved and analyzed. The calculated results show that in terms of the creep characteristics evolution, the effective stress decreases and the creep strain increases with time, and the samples exhibit the accelerated creep characteristics. The inhomogeneity of the spatial distribution of effective stress and creep strain increases with the creep-erosion coupling process. As for the evolution of the erosion characteristics, in the initial stage of the creep-erosion coupling process, the fine rock particles migrate out continuously under the effect of water flow, the volume fraction of fluidized particles, the permeability and flow velocity continuously increase, and new water-conducting channels are constantly formed in the weakly cemented rock mass. Subsequently, the erosion effect is weakened and finally stagnates due to the increasing creep effect. The closer to the inner wall of the roadway, the stronger the erosion effect. The spatial distribution of porosity and permeability after the stagnation of erosion shows obvious inhomogeneous characteristics, and the spatial distribution of water pressure presents a nonlinear-linear-nonlinear trend in the creep-erosion coupling process.
  •  
6.
  • Radamson, Henry H., et al. (författare)
  • State of the Art and Future Perspectives in Advanced CMOS Technology
  • 2020
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:8
  • Forskningsöversikt (refereegranskat)abstract
    • The international technology roadmap of semiconductors (ITRS) is approaching the historical end point and we observe that the semiconductor industry is driving complementary metal oxide semiconductor (CMOS) further towards unknown zones. Today's transistors with 3D structure and integrated advanced strain engineering differ radically from the original planar 2D ones due to the scaling down of the gate and source/drain regions according to Moore's law. This article presents a review of new architectures, simulation methods, and process technology for nano-scale transistors on the approach to the end of ITRS technology. The discussions cover innovative methods, challenges and difficulties in device processing, as well as new metrology techniques that may appear in the near future.
  •  
7.
  • Sun, He, et al. (författare)
  • Hydrological Evaluation of High-Resolution Precipitation Estimates from the WRF Model in the Third Pole River Basins
  • 2021
  • Ingår i: Journal of Hydrometeorology. - 1525-755X. ; 22:8, s. 2055-71
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, two sets of precipitation estimates that are based on the regional Weather Research and Forecasting (WRF) Model—the high Asia refined analysis (HAR) and outputs with a 9-km resolution from WRF (WRF-9km)—are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20%–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias from −11% to 3%), whereas the HAR performs well in the upper Indus and upper Brahmaputra basins (with NSE of 0.6 and bias from −15% to −9%). Both of the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.
  •  
8.
  • Weng, Zhenhua, et al. (författare)
  • Lead-Free Cs2BiAgBr6 Double Perovskite-Based Humidity Sensor with Superfast Recovery Time
  • 2019
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 29:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskites have demonstrated outstanding achievements in photoelectric applications owing to their unique properties. However, the moisture sensitivity of lead halide perovskite has rarely been developed into an applicable humidity sensor due to the intrinsic instability and toxicity issue. Herein, as a highly stable lead-free perovskite, a Cs2BiAgBr6 thin film is chosen to be the active material for humidity sensor due to its extraordinary humidity-dependent electrical properties and good stability. This Cs2BiAgBr6 thin film humidity sensor demonstrates a superfast response time (1.78 s) and recovery time (0.45 s). The superfast response and recovery properties can be attributed to the reversible physisorption of water molecules, which can be easily adsorbed onto or desorbed from the thin film surface. Moreover, the sensor also shows an excellent reliability and stability properties as well as logarithmic linearity in a relative humidity's range of 15% to 78%. The lead-free Cs2BiAgBr6 perovskite possesses great potential for application in real-time humidity sensing.
  •  
9.
  • Feng, Zhenhua, et al. (författare)
  • Multicore-Fiber-Enabled WSDM Optical Access Network With Centralized Carrier Delivery and RSOA-Based Adaptive Modulation
  • 2015
  • Ingår i: IEEE PHOTONICS JOURNAL. - : Institute of Electrical and Electronics Engineers (IEEE). - 1943-0655. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We proposed and experimentally demonstrated a wavelength-space division multiplexing (WSDM) optical access network architecture with centralized optical carrier delivery utilizing multicore fibers (MCFs) and adaptive modulation based on reflective semiconductor amplifier (RSOA). In our experiment, five of the outer cores are used for undirectional downstream (DS) transmission only, whereas the remaining outer core is utilized as a dedicated channel to transmit upstream (US) signals. Optical carriers for US are delivered from the optical line terminal (OLT) to the optical network unit (ONU) via the inner core and then transmitted back to the OLT after amplification and modulation by the RSOA in the colorless ONU side. The mobile backhaul (MB) service is also supported by the inner core. Wavelengths used in US transmission should be different from that of the MB in order to avoid the Rayleigh backscattering effect in bidirectional transmission. With quadrature phase-shift keying-orthogonal frequency-division multiplexing (QPSK-OFDM) modulation format, the aggregation DS capacity reaches 250 Gb/s using five outer cores and ten wavelengths, and it can be further scaled to 1 Tb/s using 20 wavelengths modulated with 16 QAM-OFDM. For US transmission, 2.5 Gb/s QPSK-OFDM transmission can be achieved just using a low-bandwidth RSOA, and adaptive modulation is applied to the RSOA to further enhance the US data rate to 3.12 Gb/s. As an emulation of high-speed MB transmission, 48 Gb/s inphase and quadrature (IQ) modulated popularization division multiplexing (PDM)-QPSK signal is transmitted in the inner core of MCF and coherently detected in the OLT side. Both DS and US optical signals exhibit acceptable performance with sufficient power budget.
  •  
10.
  • Jiang, Tao, et al. (författare)
  • Investigation of DC-Biased Optical OFDM With Precoding Matrix for Visible Light Communications : Theory, Simulations, and Experiments
  • 2018
  • Ingår i: IEEE Photonics Journal. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 1943-0655. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Orthogonal frequency-division-multiplexing (OFDM) technology is widely used in visible light communication (VLC) to achieve high data rate transmission. However, the traditional direct-current (DC)-biased optical OFDM (DCO-OFDM) VLC systems suffer from the high peak-to-average power ratio (PAPR) which causes signal clipping distortion, and, thus, performance degradation. Furthermore, severe high-frequency fading due to the limited system bandwidth results in poor bit error rate (BER) performance. Precoding matrix (PM) techniques have been proposed to enhance the performance of VLC OFDM transmission, but a little or no work has been carried out in investigating the theory of PM used in OFDM VLC systems. In this paper, we aim to reveal the theory of PM-DCO-OFDM for a VLC system. To figure out the intrinsic laws of a PM method, we investigate the principles of PAPR reduction, clipping distortion optimization, and signal-to-noise ratio (SNR) distribution equalization. Based on the analysis of PAPR, we theoretically proved the simplicity of PM as a method to reduce the possibility of high PAPR by improving the autocorrelation performance of input symbols. The clipping distortion could be improved due to the reduction of high PAPR. Moreover, the relatively uniform SNR distribution can be achieved by PM through equalizing the clipping and channel noise, which is beneficial to improve the BER performance in high-frequency constrained systems. However, the PM method used in a DCO-OFDM VLC system should consider the transmitting power, modulation format, and transmission distance as a whole to achieve the transmission performance improvement. The simulation results demonstrate the complementary cumulative distribution function of PAPR can be reduced similar to 3 dB, while the performance of clipping distortion power and clipping error probability are significantly improved. Furthermore, experiment is carried out with results showing that the PM method can improve the BER performance in the case that VLC OFDM transmission has enough transmitting power, but with the low transmitting power, the PM also can damage the BER performance. The simulation and experiment results are consistent with our theoretical analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy