SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liao Cuijuan) "

Sökning: WFRF:(Liao Cuijuan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luo, Yiqi, et al. (författare)
  • Matrix Approach to Land Carbon Cycle Modeling
  • 2022
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 14:7
  • Forskningsöversikt (refereegranskat)abstract
    • Land ecosystems contribute to climate change mitigation by taking up approximately 30% of anthropogenically emitted carbon. However, estimates of the amount and distribution of carbon uptake across the world's ecosystems or biomes display great uncertainty. The latter hinders a full understanding of the mechanisms and drivers of land carbon uptake, and predictions of the future fate of the land carbon sink. The latter is needed as evidence to inform climate mitigation strategies such as afforestation schemes. To advance land carbon cycle modeling, we have developed a matrix approach. Land carbon cycle models use carbon balance equations to represent carbon exchanges among pools. Our approach organizes this set of equations into a single matrix equation without altering any processes of the original model. The matrix equation enables the development of a theoretical framework for understanding the general, transient behavior of the land carbon cycle. While carbon input and residence time are used to quantify carbon storage capacity at steady state, a third quantity, carbon storage potential, integrates fluxes with time to define dynamic disequilibrium of the carbon cycle under global change. The matrix approach can help address critical contemporary issues in modeling, including pinpointing sources of model uncertainty and accelerating spin-up of land carbon cycle models by tens of times. The accelerated spin-up liberates models from the computational burden that hinders comprehensive parameter sensitivity analysis and assimilation of observational data to improve model accuracy. Such computational efficiency offered by the matrix approach enables substantial improvement of model predictions using ever-increasing data availability. Overall, the matrix approach offers a step change forward for understanding and modeling the land carbon cycle.
  •  
2.
  • Tao, Feng, et al. (författare)
  • Microbial carbon use efficiency promotes global soil carbon storage
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 981-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils store more carbon than other terrestrial ecosystems. How soil organic carbon (SOC) forms and persists remains uncertain, which makes it challenging to understand how it will respond to climatic change. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy