SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lidmar.Bergström Karna) "

Sökning: WFRF:(Lidmar.Bergström Karna)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonow, Johan M., et al. (författare)
  • A multi-disciplinary study of Phanerozoic landscape development in West Greenland
  • 2007
  • Ingår i: Geological Survey of Denmark and Greenland Bulletin: Review of Survey activities 2006. - 1604-8156. ; :13, s. 33-36
  • Tidskriftsartikel (refereegranskat)abstract
    • The western margin of the Greenland craton has been muchless stable in the Phanerozoic than previously thought. Thisnew insight has come from close integration of independentdata sets: geomorphological analysis of large-scale landscapes,apatite fission track analysis (AFTA), onshore and offshorestratigraphy and analysis of onshore fault and fracture sys -tems. Each data set records specific and unique parts of theevent chronology and is equally important to establish a con-sistent model. A key area for understanding the Mesozoic-Cenozoic landscape evolution and into the present is theuplifted part of the Nuussuaq Basin, where remnants of pla-nation surfaces cut across the Cretaceous to Eocene sedimen-tary and volcanic rocks. Our integrated analysis concludedthat the West Greenland mountains were formed by lateNeogene tectonic uplift (Fig. 1) and also provided newinsight into early Phanerozoic development. To understandour model, we present the different methods and the resultsthat can be deduced from them.
  •  
2.
  • Bonow, Johan M., et al. (författare)
  • Cenozoic uplift of Nuussuaq and Disko, West Greenland : elevated erosion surfaces as uplift markers of a passive margin
  • 2006
  • Ingår i: Geomorphology. - : Elsevier BV. - 0169-555X .- 1872-695X. ; 80:3-4, s. 325-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Remnants of a high plateau have been identified on Nuussuaq and Disko, central West Greenland. We interpret the plateau as an erosion surface (the summit erosion surface) formed mainly by a fluvial system and graded close to its former base level and subsequently uplifted to its present elevation. It extends over 150 km east–west, being of low relative relief, broken along faults, tilted westwards in the west and eastwards in the east, and having a maximum elevation of ca. 2 km in central Nuussuaq and Disko. The summit erosion surface cuts across Precambrian basement rocks and Paleocene–Eocene lavas, constraining its age to being substantially younger than the last rift event in the Nuussuaq Basin, which took place during the late Maastrichtian and Danian. The geological record shows that the Nuussuaq Basin was subjected to subsidence of several kilometres during Paleocene–Eocene volcanism and was transgressed by the sea later during the Eocene. By comparing with results from apatite fission track analysis and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and 10 Ma and caused valley incision. This generation of valleys graded to the new base level and formed a lower erosion surface, at most 1 km below the summit erosion surface, thus indicating the magnitude of its uplift. Formation of this generation of valleys was interrupted by a third uplift event also with a magnitude of 1 km that lifted the landscape to near its present position. Correlation with the fission-track record suggests that this uplift event started between 7 and 2 Ma. Uplift must have been caused initially by tectonism. Isostatic compensation due to erosion and loading and unloading of ice sheets has added to the magnitude of uplift but have not significantly altered the configuration of the surface. It is concluded that the elevations of palaeosurfaces (surfaces not in accordance with present climate or tectonic conditions) on West Greenland's passive margin can be used to define the magnitude and lateral variations of Neogene uplift events. The striking similarity between the landforms in West Greenland and those on many other passive margins is also noted.
  •  
3.
  • Bonow, Johan M., et al. (författare)
  • Elevated erosion surfaces in central West Greenland and southern Norway: their significance in integrated studies of passive margin development
  • 2007
  • Ingår i: Norwegian Journal of Geology. - 0029-196X. ; 87, s. 197-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated erosion surfaces were used as an independant data set in an integrated study of the landscape development in central West Greenland. The study resulted in a time-constrained model describing multiple episodes of post-rift uplift, erosion and burial on a passive margin. The model is based on full integration of three data sets: analysis of large-scale landforms, apatite fission track analysis (AFTA) of samples from outcrops and deep boreholes, and the geological record. These data are equally important as they record specific an unique parts of the landscape history. The relative chronology obtained from the landform record is constrained by geology, which gives the maximum age of an erosin surface, and AFTA that records the cooling history of the subsurface rock. This combined approach validates the interpretation of erosion surface as having been goverened by different base levels in the past, and shows that erosion surfaces can be used to reconstruct tectonic events. Geomorphological key observations for the landscapes of southern Norway are presented and the similarities with landscapes in central West Greenland emphasised, especially the elevated plateaux and the Mesozoic etch surfaces. This similarity suggests that it may be possible to construct a time-constrained model for the landscape development of southern Norway based on our West Greenland approach.
  •  
4.
  •  
5.
  • Bonow, Johan M., 1969- (författare)
  • Palaeosurfaces and palaeovalleys on North Atlantic previously glaciated passive margins : reference forms for conclusions on uplift and erosion
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Palaeosurfaces and palaeovalleys are landforms under destruction in the present climate and/or tectonic regime, and thus mainly reflect processes not active today. Uplifted palaeosurfaces exist along the formerly glaciated passive continental margins around the North Atlantic. Large-scale landform development has recently become a matter of interest also for geologists and geophysicists as the result of an increasing awareness that a thorough knowledge of uplift, erosion, deposition and development of landforms along continental margins can only be accomplished by combined studies using independent data from different scientific disciplines. The present study focuses on one of these above data sets; the landform record. Two uplifted areas, southern Norway and central West Greenland, were selected for landform analysis of high resolution digital elevation models, aerial photographs, relation between landforms in basement and cover rocks, offshore seismic lines and X-ray diffraction of clay minerals in saprolites. In southern Norway, analysis of slope angles within the range of pediment slopes was combined with analysis of main valley incision. This resulted in the identification of three main planation surfaces in a stepped sequence formed along the main valleys as a consequence of tectonic uplift events, maybe in the Palaeogene, (in total >1000 m). Two phases of late uplift (~900 m), probably in the Neogene, triggered incision of deep fluvial valleys, later reshaped by glacial erosion (up to 300 m). In central West Greenland palaeosurfaces were analysed in relation to cover rock of different age. An exhumed etch surface, characterized by a typical hilly relief, occurs on Disko and south of Disko Bugt, and are by the presence of cover rocks shown to be sub-Palaeocene in origin. To the north, a post-Eocene erosion surface on Nuussuaq, cuts across basement and basalt and was probably formed close to sea level. Uplift in two phases elevated this surface up to 2000 m above present sea level and broke it in differently tilted tectonic blocks. South of Disko Bugt, a planation surface, of probably the same age as the one on Nuussuaq, cuts the tilted etch surface, and also cuts across different bedrock types. The planation surface rises towards the south and splits in two surfaces, separated in altitude up to 300 m, within two highly elevated areas. The separation into two surfaces indicate two uplift events: A first minor event of a few hundred metres in the uplift centres resulted in incision of the lower planation surface. This event was later followed by a major uplift event amounting to >1000 m. Correlation with the offshore sedimentary record suggests that both uplift events occurred in the Neogene. The erosion pattern calculated from one reconstructed palaeosurface to present topography shows large spatial variations. This is interpreted as an effect of differential bedrock resistance and local variations of glacial erosion (400–1300 m in low areas). The results presented in this thesis demonstrate the usefulness of palaeosurfaces and palaeovalleys as tools for deciphering magnitude of uplift events, establishing relative event chronologies and for calculation of erosion. Moreover integrated studies of palaeolandforms, offshore geology and thermal chronologies, are shown to be invaluable when used to solve the spatial and temporal patterns of uplift, erosion and deposition.
  •  
6.
  • Bonow, Johan M., et al. (författare)
  • Palaeosurfaces in central West Greenland as reference for identification of tectonic movements and estimations of glacial erosion
  • 2006
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 50:3-4, s. 161-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Landform analysis of basement rocks has been undertaken with the aid of digital elevation data, aerial photographs and field observations in central West Greenland (69°15′N–66°00′N). Palaeosurfaces have been identified, dated relatively to each other, used to quantify uplift and fault movements and also used to estimate differential erosion. Two types of palaeosurfaces were mapped across the Precambrian basement: a surface at low elevation with distinct hills (hilly relief), and two planation surfaces formed across different types of basement rocks. The hilly relief surface emerges as an inclined surface from Cretaceous cover rocks in Disko Bugt and is interpreted as a stripped late Mesozoic etch surface. This surface is cut off towards the south by a less inclined planation surface, which is younger and thus of Cenozoic age. It is similar to the post-Eocene (Miocene?) planation surfaces identified on Disko and Nuussuaq in other studies. The planation surface splits in two southwards towards high areas around Nordre Isortoq and Sukkertoppen Ice Cap. The upper planation surface forms near-summit areas of tectonic blocks dipping in different directions and with different tilts. The uplift centres define the crests of two mega blocks, separated by the ‘Sisimiut Line’ which coincides with the Precambrian Ikertôq thrust zone. A partially developed lower planation surface indicates a first uplift of maximum 500 m followed by a second uplift of maximum 1000 m. We infer that these uplift events occurred during the late Neogene based on correlation with similar surfaces on Nuussuaq and the timing of exhumational events estimated from apatite fission track analyses of samples from a deep borehole on Nuussuaq (reported elsewhere). The difference between a reconstruction of the upper planation surface across the entire area and the present topography was used as an estimate of erosion of basement rock since the formation of the upper planation surface. The erosion is unevenly distributed and varies from almost none on the well-preserved planation surfaces to 800–1300 m along valleys, and even more in the fjords. Erosion is less within areas of gneiss in granulite facies, than in areas of gneiss in amphibolite facies.
  •  
7.
  • Green, P. F., et al. (författare)
  • Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins
  • 2013
  • Ingår i: Geological Survey of Denmark and Greenland Bulletin. - : Geological Survey of Denmark and Greenland. - 1811-4598 .- 1604-8156 .- 1904-4666. ; :30, s. 4-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The continental margin of West Greenland is similar in many respects to other elevated, passive continental margins (EPCMs) around the world. These margins are characterised by extensive regions of low relief at elevations of 1-2 kilometres above sea level sloping gently inland, with a much steeper, oceanward decline, often termed a 'Great Escarpment', terminating at a coastal plain. Recent studies, based on integration of geological, geomorphological and thermochronological evidence, have shown that the high topography of West Greenland was formed by differential uplift and dissection of an Oligo-Miocene peneplain since the late Miocene, many millions of years after continental break-up between Greenland and North America. In contrast, many studies of other EPCMs have proposed a different style of development in which the high plateaux and the steep, oceanward decline are regarded as a direct result of rifting and continental separation. Some studies assume that the elevated regions have remained high since break-up, with the high topography continuously renewed by isostasy. Others identify the elevated plains as remnants of pre-rift landscapes. Key to understanding the development of the West Greenland margin is a new approach to the study of landforms, stratigraphic landscape analysis, in which the low-relief, high-elevation plateaux at EPCMs are interpreted as uplifted peneplains: low-relief surfaces of large extent, cutting across bedrock of different age and resistance, and originally graded to sea level. Identification of different generations of peneplain (re-exposed and epigene) from regional mapping, combined with geological constraints and thermochronology, allows definition of the evolution leading to the formation of the modern-day topography. This approach is founded particularly on results from the South Swedish Dome, which document former sea levels as base levels for the formation of peneplains. These results support the view that peneplains grade towards base level, and that in the absence of other options (e.g. widespread resistant lithologies), the most likely base level is sea level. This is particularly so at continental margins due to their proximity to the adjacent ocean. Studies in which EPCMs are interpreted as related to rifting or break-up commonly favour histories involving continuous denudation of margins following rifting, and interpretation of thermochronology data in terms of monotonic cooling histories. However, in several regions, including southern Africa, south-east Australia and eastern Brazil, geological constraints demonstrate that such scenarios are inappropriate, and an episodic development involving post-breakup subsidence and burial followed later by uplift and denudation is more realistic. Such development is also indicated by the presence in sedimentary basins adjacent to many EPCMs of major erosional unconformities within the post-breakup sedimentary section which correlate with onshore denudation episodes. The nature of the processes responsible is not yet understood, but it seems likely that plate-scale forces are required in order to explain the regional extent of the effects involved. New geodynamic models are required to explain the episodic development of EPCMs, accommodating post-breakup subsidence and burial as well as subsequent uplift and denudation, long after break-up which created the characteristic, modern-day EPCM landscapes. © 2013 Pushpa Publishing House, Allahabad, India.
  •  
8.
  • Japsen, Peter, et al. (författare)
  • Formation, uplift and dissection of planation surfaces at passive continental margins - a new approach
  • 2009
  • Ingår i: Earth Surface Processes and Landforms. - : John wiley & sons Ltd. - 0197-9337 .- 1096-9837. ; 34:5, s. 683-699
  • Tidskriftsartikel (refereegranskat)abstract
    • The usefulness of large-scale, low-relief, high-level landscapes as markers of uplift events has become a subject of disagreement among geomorphologists. We argue that the formation of low-relief surfaces over areas of large extent and cutting across bedrock of different age and resistance must have been guided by distinct base levels. In the absence of other options the most likely base level is sea level. We have analysed West Greenland landscapes in a recent study by combining the cooling history from apatite fission-track analysis (AFTA) data with the denudation history from landscape analysis and the stratigraphic record. An important difference between our approach and that of classical geomorphology is that we now have the ability to document when thick sections of rocks have been deposited and then removed. The present-day high-level plateau in West Greenland is the remnant of a planation surface that was formed by denudation that lasted 1 km of cover was removed after maximum burial at the Eocene–Oligocene transition. Here we present additional AFTA data to show that the planation surface is the end-product of Cenozoic denudation even in basement areas and argue that Phanerozoic sediments – most likely of Cretaceous–Palaeogene age – must have been present prior to denudation. The planation surface was offset by reactivated faults and uplifted to present-day altitudes of up to 2 km. The uplift occurred in two late Neogene phases that caused incision of valleys below the planation surface and their subsequent uplift. We therefore find that the elevated and deeply dissected plateau is evidence of episodic post-rift uplift that took place millions of years after cessation of sea-floor spreading west of Greenland. We suggest that other margins with similar morphology may also be characterized by episodic post-rift uplift unrelated to the processes of rifting and continental separation, rather than being permanently uplifted since the time of rifting, as is commonly assumed.
  •  
9.
  •  
10.
  • Lidmar-Bergström, Karna, et al. (författare)
  • Cenozoic landscape development on the passsive margin of northern Scandinavia
  • 2007
  • Ingår i: Norwegian Journal of Geology. ; 87:1 & 2, s. 181-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The geometry of major bedrock landforms in a central part of the Northern Scandes has been examined for interpretation of landforming events and their chronology. Analysis of palaeosurfaces and palaeovalleys was undertaken based on digital elevation data. Four major landscape generations, governed by different base levels, were reconstructed within the mountains. In the east the generations more or less merge and form plains with residual hills. The configuration of the landscape generations suggests an asymmetrical uplift with maximum uplift in the west caused by discrete events during the Cenozoic and guided by reactivated Mesozoic faults west of the study area. The style and amount of uplift differs from the Southern Scandes and a hinge line is defined in between. The landscape generations were also used for estimations of the amount of glacial/fluvial erosion since the beginning of the Late Cenozoic glaciations. Erosion amounted up to 200 - 400 m in the valleys that hosted the major outlet glaciers, while the eastern plateaux and the plains with residual hills have experienced no or limited glacial erosion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy