SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liegl R.) "

Sökning: WFRF:(Liegl R.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cakir, B., et al. (författare)
  • Thrombocytopenia is associated with severe retinopathy of prematurity
  • 2018
  • Ingår i: Jci Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 3:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinopathy of prematurity (ROP) is characterized by abnormal retinal neovascularization in response to vessel loss. Platelets regulate angiogenesis and may influence ROP progression. In preterm infants, we assessed ROP and correlated with longitudinal postnatal platelet counts (n = 202). Any episode of thrombocytopenia (< 100 x 10(9)/l) at >= 30 weeks postmenstrual age (at onset of ROP) was independently associated with severe ROP, requiring treatment. Infants with severe ROP also had a lower weekly median platelet count compared with infants with less severe ROP. In a mouse oxygen-induced retinopathy model of ROP, platelet counts were lower at P17 (peak neovascularization) versus controls. Platelet transfusions at P15 and P16 suppressed neovascularization, and platelet depletion increased neovascularization. Platelet transfusion decreased retinal of vascular endothelial growth factor A (VEGFA) mRNA and protein expression; platelet depletion increased retinal VEGFA mRNA and protein expression. Resting platelets with intact granules reduced neovascularization, while thrombin-activated degranulated platelets did not. These data suggest that platelet releasate has a local antiangiogenic effect on endothelial cells to exert a downstream suppression of VEGFA in neural retina. Low platelet counts during the neovascularization phase in ROP is significantly associated with the development of severe ROP in preterm infants. In a murine model of retinopathy, platelet transfusion during the period of neovascularization suppressed retinopathy.
  •  
2.
  • Fu, Z., et al. (författare)
  • Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice
  • 2018
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 67:5, s. 974-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulindeficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes.
  •  
3.
  • Cakir, B., et al. (författare)
  • IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants
  • 2020
  • Ingår i: Jci Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 5:19
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND. Hyperglycemia, insulin insensitivity, and low IGF1 levels in extremely preterm infants are associated with an increased risk of retinopathy of prematurity (ROP), but the interactions are incompletely understood. METHODS. In 117 extremely preterm infants, serum glucose levels and parenteral glucose intake were recoded daily in the first postnatal week. Serum IGF1 levels were measured weekly. Mice with oxygen-induced retinopathy alone versus oxygen-induced retinopathy plus streptozotocin-induced hyperglycemia/hypoinsulinemia were assessed for glucose, insulin, IGF1, IGFBP1, and IGFBP3 in blood and liver. Recombinant human IGF1 was injected to assess the effect on glucose and retinopathy. RESULTS. The highest mean plasma glucose tertile of infants positively correlated with parenteral glucose intake [r (39) = 0.67, P < 0.0001]. IGF1 plasma levels were lower in the high tertile compared with those in low and intermediate tertiles at day 28 (P = 0.038 and P = 0.03). In high versus lower glucose tertiles, ROP was more prevalent (34 of 39 versus 19 of 39) and more severe (ROP stage 3 or higher; 71% versus 32%). In oxygen-induced retinopathy, hyperglycemia/hypoinsulinemia decreased liver IGF1 expression (P < 0.0001); rh-IGF1 treatment improved normal vascular regrowth (P = 0.027) and reduced neovascularization (P < 0.0001). CONCLUSION. In extremely preterm infants, high early postnatal plasma glucose levels and signs of insulin insensitivity were associated with lower IGF1 levels and increased ROP severity. In a hyperglycemia retinopathy mouse model, decreased insulin signaling suppressed liver IGF1 production, lowered serum IGF1 levels, and increased neovascularization. IGF1 supplementation improved retinal revascularization and decreased pathological neovascularization. The data support IGF1 as a potential treatment for prevention of ROP.
  •  
4.
  •  
5.
  • Fu, Z. J., et al. (författare)
  • FGF21 Administration Suppresses Retinal and Choroidal Neovascularization in Mice
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 18:7, s. 1606-1613
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathological neovascularization, a leading cause of blindness, is seen in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. Using a mouse model of hypoxia-driven retinal neovascularization, wefind that fibroblast growth factor 21 (FGF21) administration suppresses, and FGF21 deficiency worsens, retinal neovessel growth. The protective effect of FGF21 against neovessel growth was abolished in adiponectin (APN)-deficient mice. FGF21 administration also decreased neovascular lesions in two models of neovascular age-related macular degeneration: very-low-density lipoprotein-receptor-deficient mice with retinal angiomatous proliferation and laser-induced choroidal neovascularization. FGF21 inhibited tumor necrosis alpha (TNF-alpha) expression but did not alter Vegfa expression in neovascular eyes. These data suggest that FGF21 may be a therapeutic target for pathologic vessel growth in patients with neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration.
  •  
6.
  • Gong, Y., et al. (författare)
  • Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis
  • 2016
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 13, s. 201-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)alpha agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP) 2C with higher affinity than to PPAR alpha. CYP2C metabolizes omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). While omega-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both omega-3 and omega-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C omega-3 LCPUFA (and omega-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPAR alpha-/-mice and augmented omega-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic.-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPAR alpha. Fenofibrate augmented the overall protective effects of omega-3 LCPUFAs on neovascular eye diseases. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://reativecommons.org/licenses/by-nc-nd/4.0/).
  •  
7.
  • Gong, Y., et al. (författare)
  • omega-3 and omega-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165. ; 106:1, s. 16-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, threaten the visual health of children and adults. Current treatment options, including anti-vascular endothelial growth factor therapy and laser retinal photocoagulation, have limitations and are associated with adverse effects; therefore, the identification of additional therapies is highly desirable. Both clinical and experimental studies show that dietary omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) reduce retinal and choroidal angiogenesis. The omega-3 LC-PUFA metabolites from 2 groups of enzymes, cyclooxygenases and lipoxygenases, inhibit [and the omega-6 (n-6) LC-PUFA metabolites promote] inflammation and angiogenesis. However, both of the omega-3 and the omega-6 lipid products of cytochrome P450 oxidase 2C promote neovascularization in both the retina and choroid, which suggests that inhibition of this pathway might be beneficial. This review summarizes our current understanding of the roles of omega-3 and omega-6 LC-PUFAs and their enzymatic metabolites in neovascular eye diseases.
  •  
8.
  • Liegl, R., et al. (författare)
  • IGF-1 in retinopathy of prematurity, a CNS neurovascular disease
  • 2016
  • Ingår i: Early Human Development. - : Elsevier BV. - 0378-3782. ; 102, s. 13-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The retina is part of the central nervous system and both the retina as well as the brain can suffer from severe damage after very preterm birth. Retinopathy of prematurity is one of the major causes of blindness in these children and brain neuronal impairments including cognitive defects, cerebral palsy and intraventricular hemorrhage (IVH) are also complications of very preterm birth. Insulin-like growth factor 1 (IGF-1) acts to promote proliferation, maturation, growth and survival of neural cells. Low levels of circulating IGF-1 are associated with ROP and defects in the IGF-1 gene are associated with CNS disorders including learning deficits and brain growth restriction. Treatment of preterm infants with recombinant IGF-1 may potentially prevent ROP and CNS disorders. This review compares the role of IGF-1 in ROP and CNS disorders. A recent phase 2 study showed a positive effect of IGF-1 on the severity of IVH but no effect on ROP. A phase 3 trial is planned. © 2016 Elsevier Ireland Ltd
  •  
9.
  • Liegl, R., et al. (författare)
  • Retinopathy of prematurity: The need for prevention
  • 2016
  • Ingår i: Eye and Brain. - 1179-2744. ; 8, s. 91-102
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 450,000 babies are born prematurely in the USA every year. The improved survival of even the most vulnerable low body weight preterm infants has, despite improving health outcomes, led to the resurgence in preterm complications including one of the major causes for blindness in children, retinopathy of prematurity (ROP). The current mainstay in ROP therapy is laser photocoagulation and the injection of vascular endothelial growth factor (VEGF) antibodies in the late stages of the disease after the onset of neovascularization. Both are proven options for ophthalmologists to treat the severe forms of late ROP. However, laser photocoagulation destroys major parts of the retina, and the injection of VEGF antibodies, although rather simple to administer, may cause a systemic suppression of normal vascularization, which has not been studied in sufficient depth. However, the use of neither VEGF antibody nor laser treatment prevents ROP, which should be the long-term goal. It should be possible to prevent ROP by more closely mimicking the intrauterine environment after preterm birth. Such preventive measures include preventing the toxic postbirth influences (eg, oxygen excess) as well as providing the missing intrauterine factors (eg, insulin growth factor 1) and are likely to also reduce other complications of premature birth as well as ROP. This review is meant to summarize the current knowledge on the prevention of ROP with a particular emphasize on the use of insulin growth factor 1 supplementation. © 2016 Liegl et al.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy