SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liemohn Michael W.) "

Sökning: WFRF:(Liemohn Michael W.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liemohn, Michael W., et al. (författare)
  • Model Evaluation Guidelines for Geomagnetic Index Predictions
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 2079-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.
  •  
2.
  • Welling, Daniel T., et al. (författare)
  • The Earth : Plasma Sources, Losses, and Transport Processes
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 192:1-4, s. 145-208
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.
  •  
3.
  • Madanian, Hadi, et al. (författare)
  • Asymmetric Interaction of a Solar Wind Reconnecting Current Sheet and Its Magnetic Hole With Earth's Bow Shock and Magnetopause
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results of our multi-spacecraft analysis of a solar wind reconnecting current sheet (RCS) and its solar wind magnetic hole (SWMH) observed on November 20, 2018. In the solar wind, the normal vector to the current sheet plane makes an angle of 32 degrees with the Sun-Earth line. A combination of tilted current sheet plane and foreshock effects cause an asymmetric interaction with the bow shock, in which the structure arrives at the quasi-perpendicular side of the bow shock before the quasi-parallel side. The magnetic field strength inside the magnetic hole decreases by similar to 69 percent in the solar wind, with a similar depression rate observed inside the magnetosheath due to this structure. The solar wind flow slowdown and deflection during the bow shock crossing significantly disrupt the reconnection exhausts within the RCS. The interaction of the RCS and SWMH with the bow shock creates enhanced fluxes of accelerated electrons and ions. Plasma flow deflection in the magnetosheath also increases with the passage of the RCS. The ion density and temperature both increase within the current sheet to form a roughly pressure balanced structure. Field rotation and change in the dynamic pressure during this event modify the reconnection zones at the magnetopause and cause asymmetric inward motions in portions of the bow shock and the magnetopause boundaries (i.e., deformation). Unlike localized magnetosheath jets, an RCS and its associated SWMH in the solar wind have a global impact on the bow shock and the magnetopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy