SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liermann H. P.) "

Sökning: WFRF:(Liermann H. P.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grill, G., et al. (författare)
  • Mapping the world's free-flowing rivers
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 569:7755, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
  •  
2.
  • Jenei, István Zoltán, et al. (författare)
  • Structural phase transition in vanadium at high pressure and high temperature : Influence of nonhydrostatic conditions
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 83:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium has been reported to undergo phase transition upon compression from body-centered cubic (bcc) to rhombohedral structure around 62 GPa. In this paper we confirm the bcc to rhombohedral phase transition at 61.5 GPa under quasihydrostatic compression in the Ne pressure medium. Under the nonhydrostatic condition we find the phase transition occurring at 30 GPa at ambient temperature and 37 GPa at 425 K. We find the transition under the hydrostatic condition is hindered and it can occur at much lower pressure under the nonhydrostatic condition.
  •  
3.
  • Bykova, E., et al. (författare)
  • Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO2) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations. Their crystal structures are drastically different from any previously considered models, but explain well features of pair-distribution functions of highly densified silica glass and molten basalt at high pressure. Built of four, five-, and six-coordinated silicon, coesite-IV and coesite-V contain SiO6 octahedra, which, at odds with 3rd Paulings rule, are connected through common faces. Our results suggest that possible silicate liquids in Earths lower mantle may have complex structures making them more compressible than previously supposed.
  •  
4.
  • Pennicard, David, et al. (författare)
  • LAMBDA 2M GaAs - A multi-megapixel hard X-ray detector for synchrotrons
  • 2018
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature. 
  •  
5.
  • Bykov, M., et al. (författare)
  • Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-nitrogen compounds have been considered as potential high energy density materials for a long time due to the large number of energetic N-N or N=N bonds. In most cases high nitrogen content and stability at ambient conditions are mutually exclusive, thereby making the synthesis of such materials challenging. One way to stabilize such compounds is the application of high pressure. Here, through a direct reaction between Fe and N-2 in a laser-heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction. Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a marcasite structure type and features covalently bonded dinitrogen units in its crystal structure. FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N-4(2-)](n) units. Based on results of structural studies and theoretical analysis, [N-4(2-)](n) units in this compound reveal catena-poly[tetraz-1-ene-1,4-diyl] anions.
  •  
6.
  • Dubrovinsky, L., et al. (författare)
  • The most incompressible metal osmium at static pressures above 750 gigapascals
  • 2015
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 525:7568, s. 226-
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures(1). It is also very incompressible(2-4), but its high-pressure behaviour is not well understood because it has been studied(2-6) so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells(7), with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression.
  •  
7.
  • Glazyrin, K., et al. (författare)
  • Sub-micrometer focusing setup for high-pressure crystallography at the Extreme Conditions beamline at PETRA III
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - Chichester, United Kingdom : Wiley-Blackwell. - 0909-0495 .- 1600-5775. ; 29, s. 654-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X-ray diffraction instrumentation in terms of X-ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X-ray beam to the sub-micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal-to-noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single-crystal data collection from grains of micrometer to sub-micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub-micrometer resolution at multimegabar pressures.
  •  
8.
  • Knaapila, M., et al. (författare)
  • Structural study of helical polyfluorene under high quasihydrostatic pressure
  • 2013
  • Ingår i: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). - 1539-3755. ; 87:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on an x-ray diffraction (XRD) study of helical poly[9,9-bis(2-ethylhexyl)fluorene] (PF2/6) under high quasihydrostatic pressure and show an effect of pressure on the torsion angle (dihedral angle) between adjunct repeat units and on the hexagonal unit cell. A model for helical backbone conformation is constructed. The theoretical position for the most prominent 00l x-ray reflection is calculated as a function of torsion angle. The XRD of high molecular weight PF2/6 (M-n = 30 kg/mol) is measured through a diamond anvil cell upon pressure increase from 1 to 10 GPa. The theoretically considered 00l reflection is experimentally identified, and its shift with the increasing pressure is found to be consistent with the decreasing torsion angle between 2 and 6 GPa. This indicates partial backbone planarization towards a more open helical structure. The h00 peak is identified, and its shift together with the broadening of 00l implies impairment of the ambient hexagonal order, which begins at or below 2 GPa. Previously collected high-pressure photoluminescence data are reanalyzed and are found to be qualitatively consistent with the XRD data. This paper provides an example of how the helical pi-conjugated backbone structure can be controlled by applying high quasihydrostatic pressure without modifications in its chemical structure. Moreover, it paves the way for wider use of high-pressure x-ray scattering in the research of pi-conjugated polymers. DOI: 10.1103/PhysRevE.87.022602
  •  
9.
  • Koemets, E., et al. (författare)
  • Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
  • 2021
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe(2)O(3) and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mossbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory + dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
  •  
10.
  • Pistidda, C., et al. (författare)
  • Hydrogen storage systems from waste Mg alloys
  • 2014
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 1873-2755 .- 0378-7753. ; 270, s. 554-563
  • Tidskriftsartikel (refereegranskat)abstract
    • The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)(2) and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH(4) + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes. (C) 2014 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy