SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liestøl Knut) "

Sökning: WFRF:(Liestøl Knut)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knævelsrud, Helene, et al. (författare)
  • Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation
  • 2013
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 202:2, s. 331-349
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane remodeling events required for autophagosome biogenesis are still poorly understood. Because PX domain proteins mediate membrane remodeling and trafficking, we conducted an imaging-based siRNA screen for autophagosome formation targeting human PX proteins. The PX-BAR protein SNX18 was identified as a positive regulator of autophagosome formation, and its Drosophila melanogaster homologue SH3PX1 was found to be required for efficient autophagosome formation in the larval fat body. We show that SNX18 is required for recruitment of Atg16L1-positive recycling endosomes to a perinuclear area and for delivery of Atg16L1- and LC3-positive membranes to autophagosome precursors. We identify a direct interaction of SNX18 with LC3 and show that the pro-autophagic activity of SNX18 depends on its membrane binding and tubulation capacity. We also show that the function of SNX18 in membrane tubulation and autophagy is negatively regulated by phosphorylation of S233. We conclude that SNX18 promotes autophagosome formation by virtue of its ability to remodel membranes and provide membrane to forming autophagosomes.
  •  
2.
  • Knævelsrud, Helene, et al. (författare)
  • The membrane-remodeling PX-BAR protein SNX18 is required for autophagy
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Autophagy is a catabolic pathway targeting cytoplasmic material for lysosomal degradation,thereby protecting cells from accumulation of toxic components and enabling cells to survivescarce nutrient supplies. Macroautophagy is characterized by the sequestration of cytoplasmicmaterial into double-membrane vesicles, but the membrane remodeling events required forformation of autophagic vesicles are still not completely understood. However, the class IIIphosphatidylinositol 3-kinase (PI3K)/Vps34 complex and phosphatidylinositol-3-phosphate(PI3P) are of core importance to induction of autophagy. Since PX domain containingproteins are known to bind PI3P and other phosphoinositides and mediate membraneremodeling and trafficking events, we performed an imaging-based siRNA screen targetingPX domain proteins using formation of GFP-LC3 positive autophagosomes as a read-out.The PX-BAR protein SNX18 was found to strongly inhibit autophagosome formation. In linewith this, overexpression of SNX18 increased LC3 lipidation and GFP-LC3 spot formationand we demonstrate that membrane binding of SNX18 is required for efficientautophagosome formation. Moreover, SNX18 colocalizes and interacts with the autophagyassociatedproteins LC3 and TBK1. Our study identified the PX-BAR protein SNX18 to beinvolved in membrane events required for autophagosome formation.
  •  
3.
  • Kolberg, Matthias, et al. (författare)
  • Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1.
  • 2013
  • Ingår i: Neuro-Oncology. - : Oxford University Press (OUP). - 1523-5866 .- 1522-8517. ; 15:2, s. 135-147
  • Tidskriftsartikel (refereegranskat)abstract
    • There are conflicting reports as to whether malignant peripheral nerve sheath tumor (MPNST) patients with neurofibromatosis type 1 (NF1) have worse prognosis than non-NF1 MPNST patients. Large clinical studies to address this problem are lacking due to the rareness of MPNST. We have performed meta-analyses testing the effect of NF1 status on MPNST survival based on publications from the last 50 years, including only nonoverlapping patients reported from each institution. In addition, we analyzed survival characteristics for 179 MPNST patients from 3 European sarcoma centers. The meta-analyses including data from a total of 48 studies and >1800 patients revealed a significantly higher odds ratio for overall survival (OR(OS)) and disease-specific survival (OR(DSS)) in the non-NF1 group (OR(OS) = 1.75, 95% confidence interval [CI] = 1.28-2.39, and OR(DSS) = 1.68, 95% CI = 1.18-2.40). However, in studies published in the last decade, survival in the 2 patient groups has been converging, as especially the NF1 group has shown improved prognosis. For our own MPNST patients, NF1 status had no effect on overall or disease-specific survival. The compiled literature from 1963 to the present indicates a significantly worse outcome of MPNST in patients with NF1 syndrome compared with non-NF1 patients. However, survival for the NF1 patients has improved in the last decade, and the survival difference is diminishing. These observations support the hypothesis that MPNSTs arising in NF1 and non-NF1 patients are not different per se. Consequently, we suggest that the choice of treatment for MPNST should be independent of NF1 status.
  •  
4.
  • Kresse, Stine H., et al. (författare)
  • Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings: The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions: Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. © 2012 Kresse et al.
  •  
5.
  • Sandve, Geir K., et al. (författare)
  • The differential disease regulome
  • 2011
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transcription factors in disease-relevant pathways represent potential drug targets, by impacting a distinct set of pathways that may be modulated through gene regulation. The influence of transcription factors is typically studied on a per disease basis, and no current resources provide a global overview of the relations between transcription factors and disease. Furthermore, existing pipelines for related large-scale analysis are tailored for particular sources of input data, and there is a need for generic methodology for integrating complementary sources of genomic information.Results: We here present a large-scale analysis of multiple diseases versus multiple transcription factors, with a global map of over-and under-representation of 446 transcription factors in 1010 diseases. This map, referred to as the differential disease regulome, provides a first global statistical overview of the complex interrelationships between diseases, genes and controlling elements. The map is visualized using the Google map engine, due to its very large size, and provides a range of detailed information in a dynamic presentation format.The analysis is achieved through a novel methodology that performs a pairwise, genome-wide comparison on the cartesian product of two distinct sets of annotation tracks, e.g. all combinations of one disease and one TF.The methodology was also used to extend with maps using alternative data sets related to transcription and disease, as well as data sets related to Gene Ontology classification and histone modifications. We provide a web-based interface that allows users to generate other custom maps, which could be based on precisely specified subsets of transcription factors and diseases, or, in general, on any categorical genome annotation tracks as they are improved or become available.Conclusion: We have created a first resource that provides a global overview of the complex relations between transcription factors and disease. As the accuracy of the disease regulome depends mainly on the quality of the input data, forthcoming ChIP-seq based binding data for many TFs will provide improved maps. We further believe our approach to genome analysis could allow an advance from the current typical situation of one-time integrative efforts to reproducible and upgradable integrative analysis. The differential disease regulome and its associated methodology is available at © 2011 Sandve et al; licensee BioMed Central Ltd.
  •  
6.
  • Sandve, Geir K., et al. (författare)
  • The Genomic HyperBrowser: Inferential genomics at the sequence level
  • 2010
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X .- 1465-6906. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.© 2010 Sandve et al.; licensee BioMed Central Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy