SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lim Nancy Joy 1980 ) "

Sökning: WFRF:(Lim Nancy Joy 1980 )

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brandt, S. Anders, 1970-, et al. (författare)
  • Importance of river bank and floodplain slopes on the accuracy of flood inundation mapping
  • 2012
  • Ingår i: River Flow 2012. - Leiden, The Netherlands : CRC Press / Balkema (Taylor & Francis). - 9780415621298 - 9780203076354 - 9781466575523 ; , s. 1015-1020
  • Konferensbidrag (refereegranskat)abstract
    • Effective flood assessment and management depend on accurate models of flood events, which in turn are strongly affected by the quality of digital elevation models (DEMs). In this study, HEC-RAS was used to route one specificwater discharge through the main channel of the Eskilstuna River, Sweden. DEMs with various resolutions and accuracies were used to model the inundation. The results showed a strong positive relationship between the quality of theDEMand the extent of the inundation. However, evenDEMswith the highest resolution produced inaccuracies. In another case study, the Testebo River, the model settings could be calibrated, thanks to a surveyed old inundation event. However, even with the calibration efforts, the resulting inundation extents showed varying degrees of deviation from the surveyed flood boundaries. Therefore, it becomes clear that not only does the resolution of the DEM impact the quality of the results; also, the floodplain slope perpendicular to the river flow will impact the modelling accuracy. Flatter areas exhibited the greatest predictive uncertainties regardless of the DEM’s resolution. For perfectly flat areas, uncertainty becomes infinite.
  •  
3.
  • Brandt, S. Anders, 1970-, et al. (författare)
  • Mapping Flood Risk Uncertainty Zones in Support of Urban Resilience Planning
  • 2021
  • Ingår i: Urban Planning. - Lisbon, Portugal : Cogitatio. - 2183-7635. ; 6:3, s. 258-271
  • Tidskriftsartikel (refereegranskat)abstract
    • River flooding and urbanization are processes of different character that take place worldwide. As the latter tends to make the consequences of the former worse, together with the uncertainties related to future climate change and flood‐risk modeling, there is a need to both use existing tools and develop new ones that help the management and planning of urban environments. In this article a prototype tool, based on estimated maximum land cover roughness variation, the slope of the ground, and the quality of the used digital elevation models, and that can produce flood ‘uncertainty zones’ of varying width around modeled flood boundaries, is presented. The concept of uncertainty, which urban planners often fail to consider in the spatial planning process, changes from something very difficult into an advantage in this way. Not only may these uncertainties be easier to understand by the urban planners, but the uncertainties may also function as a communication tool between the planners and other stakeholders. Because flood risk is something that urban planners always need to consider, these uncertainty zones can function both as buffer areas against floods, and as blue‐green designs of significant importance for a variety of ecosystem services. As the Earth is warming and the world is urbanizing at rates and scales unprecedented in history, we believe that new tools for urban resilience planning are not only urgently needed, but also will have a positive impact on urban planning.
  •  
4.
  • Brandt, S. Anders, 1970-, et al. (författare)
  • Visualising DEM-related flood-map uncertainties using a disparity-distance equation algorithm
  • 2016
  • Ingår i: IAHS-AISH Proceedings and Reports. - Göttingen : Copernicus Publications on behalf of International Association of Hydrological Sciences (IAHS). ; , s. 153-159
  • Konferensbidrag (refereegranskat)abstract
    • The apparent absoluteness of information presented by crisp-delineated flood boundaries can lead tomisconceptions among planners about the inherent uncertainties associated in generated flood maps. Even mapsbased on hydraulic modelling using the highest-resolution digital elevation models (DEMs), and calibrated withthe most optimal Manning’s roughness (n) coefficients, are susceptible to errors when compared to actual floodboundaries, specifically in flat areas. Therefore, the inaccuracies in inundation extents, brought about by thecharacteristics of the slope perpendicular to the flow direction of the river, have to be accounted for. Instead ofusing the typical Monte Carlo simulation and probabilistic methods for uncertainty quantification, an empiricalbaseddisparity-distance equation that considers the effects of both the DEM resolution and slope was used tocreate prediction-uncertainty zones around the resulting inundation extents of a one-dimensional (1-D) hydraulicmodel. The equation was originally derived for the Eskilstuna River where flood maps, based on DEM dataof different resolutions, were evaluated for the slope-disparity relationship. To assess whether the equation isapplicable to another river with different characteristics, modelled inundation extents from the Testebo Riverwere utilised and tested with the equation. By using the cross-sectional locations, water surface elevations, andDEM, uncertainty zones around the original inundation boundary line can be produced for different confidences.The results show that (1) the proposed method is useful both for estimating and directly visualising modelinaccuracies caused by the combined effects of slope and DEM resolution, and (2) the DEM-related uncertaintiesalone do not account for the total inaccuracy of the derived flood map. Decision-makers can apply it to alreadyexisting flood maps, thereby recapitulating and re-analysing the inundation boundaries and the areas that areuncertain. Hence, more comprehensive flood information can be provided when determining locations whereextra precautions are needed. Yet, when applied, users must also be aware that there are other factors that caninfluence the extent of the delineated flood boundary.
  •  
5.
  •  
6.
  • Lim, Nancy Joy, 1980-, et al. (författare)
  • Are Feature Agreement Statistics Alone Sufficient to Validate Modelled Flood Extent Quality? : A Study on Three Swedish Rivers Using Different Digital Elevation Model Resolutions
  • 2019
  • Ingår i: Mathematical problems in engineering (Print). - : Hindawi Publishing Corporation. - 1024-123X .- 1563-5147. ; 2019
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydraulic modelling is now, at increasing rates, used all over the world to provide flood risk maps for spatial planning, flood insurance, etc. This puts heavy pressure on the modellers and analysts to not only produce the maps but also information on the accuracy and uncertainty of these maps. A common means to deliver this is through performance measures or feature statistics. These look at the global agreement between the modelled flood area and the reference flood that is used. Previous studies have shown that the feature agreement statistics do not differ much between models that have been based on digital elevation models (DEMs) of different resolutions, which is somewhat surprising since most researchers agree that high-resolution DEMs are to be preferred over poor resolution DEMs. Hence, the aim of this study was to look into how and under which conditions the different feature agreement statistics differ, in order to see when the full potential of high-resolution DEMs can be utilised. The results show that although poor resolution DEMs might produce high feature agreement scores (around F > 0.80), they may fail to provide good flood extent estimations locally, particularly when the terrain is flat. Therefore, when high-resolution DEMs (1 to 5 m) are used, it is important to carefully calibrate the models by the use of the roughness parameter. Furthermore, to get better estimates on the accuracy of the models, other performance measures such as distance disparities should be considered.
  •  
7.
  •  
8.
  • Lim, Nancy Joy, 1980-, et al. (författare)
  • DEM Resolution and Roughness Effect in Relation to Model Performance
  • 2023. - 1
  • Ingår i: Geospatial Information Handbook for Water Resources and Watershed Management, Volume II. - Boca Raton : CRC Press. - 9781003175025 - 9781032006499 - 9781032006512
  • Bokkapitel (refereegranskat)abstract
    • To understand how the produced flood boundaries from hydraulic modeling can be affected by the resolution of the Digital Elevation Model (DEM) and the roughness values used, and how different performance measures can affect the choice of most optimal models, different simulations were conducted using varying pairs of DEM and Manning’s n. Each result was then compared to the reference flood data and analyzed using different performance measures that account for the sizes of inundation (F-statistics), and the distance between the modeled and reference flood (disparity measures). The results showed that the different pairs of DEM resolution and Manning’s n produced different performance scores and flood extents. High-resolution DEMs performed generally better with higher resolution DEMs, while lower resolution DEMs received better performance when paired with lower Manning’s n. The different model performances also produced different combinations having the most optimal performances depending on the assumptions they applied in the computations. Additionally, the results showed that models from coarser resolution DEMs can produce higher maximum scores than higher resolution DEMs. However, when the maps, cross-sectional profiles, and the water surface elevations from the coarser resolution DEMs were compared with the higher resolution DEMs, they are more inaccurate in representing the terrain, flood boundaries, and the water depths. Thus, interpreting model results only based on performance measure, particularly for lower resolution DEMs, may give incorrect conclusion on the optimality of the result. It is important that the flood extent maps, cross-sectional profiles, and the derived water depths are analyzed together with the performance scores to gain better understanding of the reliability of flood model results.
  •  
9.
  • Lim, Nancy Joy, 1980-, et al. (författare)
  • Flood map boundary sensitivity due to combined effects of DEM resolution and roughness in relation to model performance
  • 2019
  • Ingår i: Geomatics, Natural Hazards and Risk. - : Taylor & Francis. - 1947-5705 .- 1947-5713. ; 10:1, s. 1613-1647
  • Tidskriftsartikel (refereegranskat)abstract
    • In comprehending flood model results, we performed sensitivity analyses and evaluated how different combinations of digital elevation model (DEM) resolution and Manning’s roughness affect flood maps produced from a 2D hydraulic model. Moreover, we analysed how the estimation of accuracy can further be influenced by the performance measure and the area’s topography. Various combinations of DEM and Manning’s n produced different results, in terms of quantified performance in relation to actual flood extent and the generated flood boundaries. High-resolution DEMs performed better with higher Manning’s n, while lower n values were better for lower resolution DEMs. Furthermore, although lower resolution DEMs (25 and 50 m) received higher quantified performances, there are more discrepancies in the flood maps and water surface elevations (WSE) produced by them. The current statistical estimators of model performance do not necessarily provide an accurate estimate of which combination of DEM resolution and roughness are more suitable for application to modelling. Different statistical estimates have different assumptions, which can affect the model selection. Therefore, a more holistic approach towards model selection should be adopted that gives equal importance to statistical estimators, as well as the quality of flood inundation extents.
  •  
10.
  • Lim, Nancy Joy, 1980- (författare)
  • Modelling, mapping and visualisation of flood inundation uncertainties
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Flood maps showing extents of predicted flooding for a given extreme event have wide usage in all types of spatial planning tasks, as well as serving as information material for the public. However, the production processes that these maps undergo (including the different data, methods, models and decisions from the persons generating them), which include both Geographic Information Systems (GIS) and hydraulic modelling, affect the map’s content, and will be reflected in the final map. A crisp flood boundary, which is a common way of representing the boundary in flood maps, may therefore not be the best representation to be used. They provide a false implication that these maps are correct and that the flood extents are absolute, despite the effects of the entire modelling in the prediction output. Hence, this research attempts to determine how flood prediction outputs can be affected by uncertainties in the modelling process. In addition, it tries to evaluate how users understand, utilise and perceive flood uncertainty information. Three main methods were employed in the entire research: uncertainty modelling and analyses; map and geovisualisation development; and user assessment. The studies in this work showed that flood extents produced were influenced by the Digital Elevation Model (DEM) resolution and the Manning’s  used. This effect was further increased by the topographic characteristic of the floodplain. However, the performance measure used, which quantify how well a model produces result in relation to a reference floor boundary, had also biases in quantifying outputs. Determining the optimal model output, therefore, depended on outcomes of the goodness-of-fit measures used. In this research, several ways were suggested on how uncertainties can be visualised based on the data derived from the uncertainty assessment and by characterising the uncertainty information. These can be through: dual-ended maps; flood probability maps; sequential maps either highlighting the degrees of certainty (certainty map) or degrees of uncertainty (uncertainty map) in the data; binary maps; overlain flood boundaries from different calibration results; and performance bars. Different mapping techniques and visual variables were used for their representation. These mapping techniques employed, as well as the design of graphical representation, helped facilitate understanding the information by the users, especially when tested during the evaluations. Note though that there were visualisations, which the user found easier to comprehend depending on the task given. Each of these visualisations had also its advantages and disadvantages in communicating flood uncertainty information, as shown in the assessments conducted. Another important aspect that came out in the study was how the users’ background influence decision-making when using these maps. Users’ willingness to take risks depended not only on the map, but their perceptions on the risk itself. However, overall, users found the uncertainty maps to be useful to be incorporated in planning tasks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy