SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lima Eder C.) "

Sökning: WFRF:(Lima Eder C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Hazmi, Hussein E., et al. (författare)
  • Wastewater reuse in agriculture : Prospects and challenges
  • 2023
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 236
  • Forskningsöversikt (refereegranskat)abstract
    • Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
  •  
2.
  • Grimm, Alejandro, et al. (författare)
  • Shiitake spent mushroom substrate as a sustainable feedstock for developing highly efficient nitrogen-doped biochars for treatment of dye-contaminated water
  • 2023
  • Ingår i: Journal of Water Process Engineering. - : Elsevier. - 2214-7144. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • Edible white-rot mushrooms are organisms that are cultivated at an industrial scale using wood-based substrates. The mushroom industry has an estimated annual production of 34 Mt of edible mushrooms, and approximately 70 wt% of the substrate is left as waste known as spent mushroom substrate (SMS). The huge volumes of SMS generated by mushroom farms hinder proper recycling, meaning that combustion or open-field burning are common disposal practices. This paper shows a concept that could help reduce the environmental impact of the mushroom industry. SMS from the cultivation of shiitake mushroom was used as a carbon precursor for the production of nitrogen-doped activated biochar that was used to remove reactive orange-16 (RO-16) azo dye from water, as well as contaminants from two synthetic effluents and real sewage water. Melamine was used as a nitrogen dopant and phosphoric acid as an activating agent. Samples without the addition of melamine were used for comparison. The doping/impregnation process was carried out in one-step, followed by pyrolysis at 700 and 900 °C for 1 h. BET, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used for the characterization of the biochars. The specific surface area of the doped samples was slightly lower, i.e., 1011 m2/g (SMS-700 °C), 810 m2/g (SMS-700 °C + N), 1095 m2/g (SMS-900 °C), and 943 m2/g (SMS-900 °C + N). Raman spectroscopic analysis showed that the N-doped biochars had more defective carbon structures than the non-doped ones. XPS analysis showed that doping with melamine led to the formation of N-functionalities on the surface of the biochar particles. The kinetics of adsorption were well represented by the Avrami model. The adsorption isotherms were well-fitted by the Liu model. The maximum adsorption capacities (qmax) of RO-16 were much higher for the N-doped biochars, i.e., 120 mg/g (SMS-700 °C), 216 mg/g (SMS-700 °C + N), 168 mg/g (SMS-900 °C), and 393 mg/g (SMS-900 °C + N). N-doped biochar samples were more effective for the removal of contaminants from synthetic effluents and sewage water. N-doped biochar produced at 900 °C showed good recyclability. This work concludes that SMS is a valuable waste that could be used for the production of activated carbon and that N-doping helped to improve the adsorption performance to a great extent.
  •  
3.
  • Rabiee, Navid, et al. (författare)
  • Green and Sustainable Membranes: A review
  • 2023
  • Ingår i: Environmental Research. - : Academic Press Inc.. - 0013-9351 .- 1096-0953. ; 231
  • Forskningsöversikt (refereegranskat)abstract
    • Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
  •  
4.
  • Rabiee, Navid, et al. (författare)
  • Green Biomaterials : fundamental principles
  • 2023
  • Ingår i: Green Biomaterials. - : Taylor & Francis. - 2993-4168. ; 1:1, s. 1-4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy