SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Limpens J) "

Sökning: WFRF:(Limpens J)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Limpens, J., et al. (författare)
  • Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses : a meta-analysis
  • 2011
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 191:2, s. 496-507
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data. We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased annual precipitation intensified the negative effects of N. The temperature effect was comparable to an experimental application of almost 4 g N m(-2) yr(-1) for each 1 degrees C increase. Our results indicate that current rates of N deposition in a warmer environment will strongly inhibit C sequestration by Sphagnum-dominated vegetation.
  •  
3.
  • Limpens, J., et al. (författare)
  • Glasshouse vs field experiments : do they yield ecologically similar results for assessing N impacts on peat mosses?
  • 2012
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 195:2, s. 408-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. We investigated whether glasshouse experiments are reliable proxies for field experiments for assessing interactions between N deposition and environment as controls on Sphagnum N concentration and production. We performed a meta-analysis over 115 glasshouse experiments and 107 field experiments. We found that glasshouse and field experiments gave similar qualitative and quantitative estimates of changes in Sphagnum N concentration in response to N application. However, glasshouse-based estimates of changes in production even qualitative assessments diverged from field experiments owing to a stronger N effect on production response in absence of vascular plants in the glasshouse, and a weaker N effect on production response in presence of vascular plants compared to field experiments. Thus, although we need glasshouse experiments to study how interacting environmental factors affect the response of Sphagnum to increased N deposition, we need field experiments to properly quantify these effects.
  •  
4.
  •  
5.
  • Gerbens, L. A A, et al. (författare)
  • Evaluation of the measurement properties of symptom measurement instruments for atopic eczema : A systematic review
  • 2017
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538. ; 72:1, s. 146-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Methods: Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Results: Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. Conclusions: ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE.
  •  
6.
  • Bengtsson, Fia, 1986-, et al. (författare)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
7.
  • Granath, Gustaf, et al. (författare)
  • Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 15:16, s. 5189-5202
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
  •  
8.
  • Limpens, J., et al. (författare)
  • Peatlands and the carbon cycle : from local processes to global implications – a synthesis
  • 2008
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 5:5, s. 1475-1491
  • Forskningsöversikt (refereegranskat)abstract
    • Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15-30% of the world's soil carbon ( C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange ( NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales.
  •  
9.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy