SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Limpert Jens) "

Search: WFRF:(Limpert Jens)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Legesse, Fisseha Bekele, et al. (author)
  • Dual-focus coherent anti-Stokes Raman scattering microscopy using a compact two-beam fiber laser source
  • 2017
  • In: Optics Letters. - 0146-9592. ; 42:2, s. 183-186
  • Journal article (peer-reviewed)abstract
    • We have developed a dual-focus coherent anti-Stokes Raman scattering (CARS) microscope based on a dual output, compact fiber laser source. The underlying concepts of time-multiplexed, two-beam scanning and demultiplexed detection that we already employed for second-harmonic generation are here naturally extended for CARS microscopy. The layout of a robust, all-fiber laser source was reconfigured to provide two outputs, each containing the two colors necessary for the CARS process. The utilization of the design for simultaneously imaging two laterally or axially separated fields of view and, thus, inherently speeding up the image acquisition process, is demonstrated on human artery tissue samples.
  •  
2.
  • Meyer, Tobias, et al. (author)
  • A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics
  • 2013
  • In: Analyst. - : Royal Society of Chemistry (RSC). - 1364-5528. ; 138:14, s. 4048-4057
  • Journal article (peer-reviewed)abstract
    • The past years have seen increasing interest in nonlinear optical microscopic imaging approaches for the investigation of diseases due to the method's unique capabilities of deep tissue penetration, 3D sectioning and molecular contrast. Its application in clinical routine diagnostics, however, is hampered by large and costly equipment requiring trained staff and regular maintenance, hence it has not yet matured to a reliable tool for application in clinics. In this contribution implementing a novel compact fiber laser system into a tailored designed laser scanning microscope results in a small footprint easy to use multimodal imaging platform enabling simultaneously highly efficient generation and acquisition of second harmonic generation (SHG), two-photon excited fluorescence (TPEF) as well as coherent anti-Stokes Raman scattering (CARS) signals with optimized CARS contrast for lipid imaging for label-free investigation of tissue samples. The instrument combining a laser source and a microscope features a unique combination of the highest NIR transmission and a fourfold enlarged field of view suited for investigating large tissue specimens. Despite its small size and turnkey operation rendering daily alignment dispensable the system provides the highest flexibility, an imaging speed of 1 megapixel per second and diffraction limited spatial resolution. This is illustrated by imaging samples of squamous cell carcinoma of the head and neck (HNSCC) and an animal model of atherosclerosis allowing for a complete characterization of the tissue composition and morphology, i.e. the tissue's morphochemistry. Highly valuable information for clinical diagnostics, e. g. monitoring the disease progression at the cellular level with molecular specificity, can be retrieved. Future combination with microscopic probes for in vivo imaging or even implementation in endoscopes will allow for in vivo grading of HNSCC and characterization of plaque deposits towards the detection of high risk plaques.
  •  
3.
  • Meyer, Tobias, et al. (author)
  • Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics
  • 2013
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 85:14, s. 6703-6715
  • Journal article (peer-reviewed)abstract
    • Over the past years fast label-free nonlinear imaging modalities providing molecular contrast of endogenous disease markers with subcellular spatial resolution have been emerged. However, applications of these imaging modalities in clinical settings are still at the very beginning. This is because single nonlinear imaging modalities such as second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) have only limited value for diagnosing diseases due to the small number of endogenous markers. Coherent anti-Stokes Raman scattering (CARS) microscopy on the other hand can potentially be added to SHG and TPEF to visualize a much broader range of marker molecules. However, CARS requires a second synchronized laser source and the detection of a certain wavenumber range of the vibrational spectrum to differentiate multiple molecules, which results in increased experimental complexity and often inefficient excitation of SHG and TPEF signals. Here we report the application of a novel near-infrared (NIR) fiber laser of 1 MHz repetition rate, 65 ps pulse duration, and 1 cm(-1) spectral resolution to realize an efficient but experimentally simple SGH/TPEF/multiplex CARS multimodal imaging approach for a label-free characterization of composition of complex tissue samples. This is demonstrated for arterial tissue specimens demonstrating differentiation of elastic fibers, triglycerides, collagen, myelin, cellular cytoplasm, and lipid droplets by analyzing the CARS spectra within the C-H stretching region only. A novel image analysis approach for multispectral CARS data based on colocalization allows correlating spectrally distinct pixels to morphologic structures. Transfer of this highly precise but compact and simple to use imaging approach into clinical settings is expected in the near future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view