SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lin Kun Ju) "

Sökning: WFRF:(Lin Kun Ju)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
4.
  • Wang, Pei-Ning, et al. (författare)
  • Plasma pyroglutamate-modified amyloid beta differentiates amyloid pathology.
  • 2020
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyroglutamate-modified amyloid β (AβpE3) could be a biomarker for Aβ plaque pathology in the brain. An ultra-high-sensitive assay is needed for detecting AβpE3-40.Immunomagnetic reduction was used for quantification of AβpE3-40 in plasma from 46 participants. The concentrations of AβpE3-40 of these subjects were compared with 18F-florbetapir positron emission tomography (PET) images.AβpE3-40 concentration was 44.1 ± 28.2fg/mL in PET- (n = 28) and 91.6 ± 54.6fg/mL in PET+ (n = 18; P < .05). The cutoff value of AβpE3-40 for discriminating PET- from PET+ was 55.5fg/mL, resulting in a sensitivity of 83.3%, a specificity of 71.4%. The concentration of AβpE3-40 showed a moderate correlation (r = 0.437) with PET standardized uptake value ratio.We did not enroll pre-clinical AD subject with normal cognition but Aβ PET+. It would be an important issue to explore the feasibility of using AβpE3-40 for screening pre-clinical subjects.These results reveal the feasibility of detecting Aβ pathology using quantification of a plaque-derived Aβ molecule in plasma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Blennow, Kaj, 1958 (2)
Zetterberg, Henrik, ... (2)
Wang, Mei (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
visa fler...
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Okamoto, Koji (2)
Olsson, Stefan (2)
Layfield, Robert (2)
Schorderet, Daniel F ... (2)
Hofman, Paul (2)
Lingor, Paul (2)
Xu, Liang (2)
Sood, Anil K (2)
Yue, Zhenyu (2)
Corbalan, Ramon (2)
Swanton, Charles (2)
Johansen, Terje (2)
Ray, Swapan K. (2)
Nguyen, Huu Phuc (2)
visa färre...
Lärosäte
Göteborgs universitet (3)
Lunds universitet (3)
Karolinska Institutet (3)
Linköpings universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
visa fler...
Stockholms universitet (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy