SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lind Andreas 1985 ) "

Sökning: WFRF:(Lind Andreas 1985 )

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Anders, et al. (författare)
  • Parameterization procedure of a powertrain model for a driving simulator
  • 2016
  • Ingår i: Advances in Transportation Studies. - : Aracne editrice. - 1824-5463. ; 1, s. 99-112
  • Tidskriftsartikel (refereegranskat)abstract
    • The automotive industry is facing a major challenge to reduce environmental impacts. As a consequence, the increasing diversity of powertrain configurations put a demand on testing and evaluation procedures. One of the key tools for this purpose is simulators. In this paper a powertrain model and a procedure for parameterizing it, using chassis dynamometers and a developed pedal robot are presented. The parameterizing procedure uses the on-board diagnostics of the car and does not require any additional invasive sensors.Thus, the developed powertrain model and parameterization procedure provide a rapid non- invasive way of modelling powertrains of test cars. The parameterizing procedure has been used to model a front wheel drive Golf V with a 1.4L multi-fuel engine and a manual gearbox. The achieved results show a good match between simulation results and test data. The powertrain model has also been tested in real-time in a driving simulator.
  •  
2.
  • Hanson, Lars, et al. (författare)
  • Design concept evaluation in digital human modeling tools
  • 2022
  • Ingår i: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. - : University of Iowa Press. - 9780984037841 ; , s. 1-9
  • Konferensbidrag (refereegranskat)abstract
    • In the design process of products and production systems, the activity to systematically evaluate initial alternative design concepts is an important step. The digital human modeling (DHM) tools include several different types of assessment methods in order to evaluate product and production systems. Despite this, and due to the fact that a DHM tool in essence is a computer-supported design and analysis tool, none of the DHM tools provide the functionality to, in a systematic way, use the results generated in the DHM tool to compare design concepts between each other. The aim of this paper is to illustrate how a systematic concept evaluation method is integrated in a DHM tool, and to exemplify how it can be used to systematically assess design alternatives. Pugh´s method was integrated into the IPS software with LUA scripting to systematically compare design concepts. Four workstation layout concepts were generated by four engineers. The four concepts were systematically evaluated with two methods focusing on human well-being and two methods focusing on system performance and cost. The result is very promising. The demonstrator illustrates that it is possible to perform a systematic concept evaluation based on human well-being, overall system performance, and other parameters, where some of the data is automatically provided by the DHM tool and other data manually. The demonstrator can also be used to evaluate only one design concept, where it provides the software user and the decision maker with an objective and visible overview of the success of the design proposal from the perspective of several evaluation methods.
  •  
3.
  • Iriondo Pascual, Aitor, 1993-, et al. (författare)
  • Enabling Concurrent Multi-Objective Optimization of Worker Well-Being and Productivity in DHM Tools
  • 2022
  • Ingår i: SPS2022. - Amsterdam; Berlin; Washington, DC : IOS Press. - 9781643682686 - 9781643682693 ; , s. 404-414
  • Konferensbidrag (refereegranskat)abstract
    • Work-related musculoskeletal disorders (WMSDs) are often associated with high costs for manufacturing companies and society, as well as negative effects on sustainable working life of workers. To both ensure workers’ well-being and reduce the costs of WMSDs, it is important to consider worker well-being in the design and operations of production processes. To facilitate the simulation of humans in production and improve worker well-being, there are numerous digital human modelling (DHM) tools available on the market. Besides simulation of humans in production, there are numerous production simulation software to simulate production flows of factories, robots and workstations that offer the possibility of improving the productivity of the stations, optimizing the layout and the configuration of the production lines. Despite of the capabilities of DHM and production flow simulation software, there is a lack of tools that can handle an overall optimization perspective, where it is possible to concurrently treat aspects related to both worker well-being and productivity within one tool. This study presents a prescribed tool that enables concurrent multi-objective optimization of worker well-being and productivity in DHM tools by analyzing the impact of different design alternatives. The tool was assessed in a workstation layout optimization use case. In the use case, risk scores of an ergonomics evaluation method was used as a measure of well-being, and total walking distance and workstation area were used as measures of productivity. The results show that the optimized solutions improve both total walking distance, workstation area and ergonomic risk scores compared to the initial solution. This study suggests that the concurrent multi-objective optimization of worker well-being and productivity could generate more optimal solutions for industry and increase the likelihood for a sustainable working life of workers. Therefore, further studies in this field are claimed to be beneficial to industry, society and workers.
  •  
4.
  • Lind, Andreas, 1985-, et al. (författare)
  • Digital support for rules and regulations when planning and designing factory layouts
  • 2023
  • Ingår i: Procedia CIRP. - : Elsevier. - 2212-8271 .- 2212-8271. ; 120, s. 1445-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • Factory layouts are frequently planned and designed in virtual environments, based on the experience of the layout planner. This planning and design process depends on information from several cross-disciplinary activities performed by several functions and experts, e.g., product development, manufacturing process planning, resource descriptions, ergonomics, and safety. Additionally, the layout planner also needs to consider applicable rules and regulations. This experience-based and manual approach to plan and design factory layouts, considering a multitude of inputs and parameters, is a cumbersome iterative process with a high risk of human error and faulty inputs and updates. The general trend in industry is to automate and assist users with their tasks and activities, deriving from concepts such as Industry 4.0 and Industry 5.0. This paper presents and demonstrates how digital support for rules and regulations can assist layout planners in factory layout work. The objective is to support the layout planner in accounting for area/volume reservations required to comply with rules and regulations for workers and equipment in the factory layout. This is a step in a wider initiative to provide enhanced digital support to layout planners, making the layout planning and design process more objective and efficient, and bridge gaps between cross-disciplinary planning and design activities.
  •  
5.
  • Lind, Andreas, 1985-, et al. (författare)
  • Evaluating a Digital Twin Concept for an Automatic Up-to-Date Factory Layout Setup
  • 2022
  • Ingår i: SPS2022. - Amsterdam; Berlin; Washington, DC : IOS Press. - 9781643682686 - 9781643682693 ; , s. 473-484
  • Konferensbidrag (refereegranskat)abstract
    • Today, manufacturing factory layout setups are most often manually designed and kept up-to-date during their lifecycle with computer-aided design software’s, so that analyses, verification simulations, and decisions can continuously be done. This manual approach is a cumbersome iterative process to collect the necessary information, with a high risk of faulty inputs and updates. Often the virtual descriptions do not match the physical version of the factory setup. This research presents a digital twin solution where physical equipment is connected to a virtual representation of the same equipment and automatically updates the virtual environment with the spatial position of the physical equipment and a proposed way to evaluate it. The physical equipment either has inbuilt sensors or has been equipped with external wireless sensors to track the spatial position. The metadata are distributed via Node-RED (a tool to visualize Internet of Things) to the simulation software Industrial Path Solutions, where the virtual equipment is repositioned based on data from the physical equipment. The result shows that it is possible to send spatial position information from a physical equipment and update the corresponding virtual description of the equipment in its virtual environment. The accuracy of the updates has been evaluated with manual measurements. Hence, the virtual environment of the factory setup, i.e., the digital twin, updates automatically based on the data sent by the physical equipment. With an up-to-date virtual environment, more accurate simulations and optimizations of the factory setup can be achieved. Examples of such possibilities are to evaluate ergonomic conditions or to optimize robot paths for robot cells in realistic and up-to-date virtual environments. Also, one could imagine making virtual reality visits to hazardous or sensitive factory environments in a safe way or studying things that otherwise would be hard or impossible in the real world. 
  •  
6.
  • Lind, Andreas, 1985-, et al. (författare)
  • Extending and demonstrating an engineering communication framework utilising the digital twin concept in a context of factory layouts
  • 2023
  • Ingår i: International Journal of Services Operations and Informatics. - : InderScience Publishers. - 1741-539X .- 1741-5403. ; 12:3, s. 201-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The factory layout is frequently planned in virtual environments, based on the experience of software tool users. This planning process is cumbersome and iterative to collect the necessary information, with a high risk of faulty inputs and updates. The digital twin concept has been introduced in order to speed up information sharing within a company; it relies on connectivity. However, the concept is often misunderstood as just a 3D model of a virtual object, not including connectivity. The aim of this paper is to present an extended virtual and physical engineering communication framework including four concepts: digital model, digital pre-runner, digital shadow, and digital twin. The four concepts are demonstrated and described in order to facilitate understanding how data exchange between virtual and physical objects can work in the future and having up-to date virtual environments enables simulating, analysing, and improving on more realistic and accurate datasets.
  •  
7.
  • Lind, Andreas, 1985-, et al. (författare)
  • Multi-objective optimisation of a logistics area in the context of factory layout planning
  • 2024
  • Ingår i: Production & Manufacturing Research. - : Taylor & Francis Group. - 2169-3277. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The manufacturing factory layout planning process is commonly supported by the use of digital tools, enabling creation and testing of potential layouts before being realised in the real world. The process relies on engineers’ experience and inputs from several cross-disciplinary functions, meaning that it is subjective, iterative and prone to errors and delays. To address this issue, new tools and methods are needed to make the planning process more objective, efficient and able to consider multiple objectives simultaneously. This work suggests and demonstrates a simulation-based multi-objective optimisation approach that assists the generation and assessment of factory layout proposals, where objectives and constraints related to safety regulations, workers’ well-being and walking distance are considered simultaneously. The paper illustrates how layout planning for a logistics area can become a cross-disciplinary and transparent activity, while being automated to a higher degree, providing objective results to facilitate informed decision-making.
  •  
8.
  • Lind, Andreas, 1985-, et al. (författare)
  • Multi-Objective Optimization of an Assembly Layout Using Nature-Inspired Algorithms and a Digital Human Modeling Tool
  • 2024
  • Ingår i: IISE Transactions on Occupational Ergonomics and Human Factors. - : Taylor & Francis Group. - 2472-5838 .- 2472-5846.
  • Tidskriftsartikel (refereegranskat)abstract
    • OCCUPATIONAL APPLICATIONSIn the context of Industry 5.0, our study advances manufacturing factory layout planning by integrating multi-objective optimization with nature-inspired algorithms and a digital human modeling tool. This approach aims to overcome the limitations of traditional planning methods, which often rely on engineers’ expertise and inputs from various functions in a company, leading to slow processes and risk of human errors. By focusing the multi-objective optimization on three primary targets, our methodology promotes objective and efficient layout planning, simultaneously considering worker well-being and system performance efficiency. Illustrated through a pedal car assembly station layout case, we demonstrate how layout planning can transition into a transparent, cross-disciplinary, and automated activity. This methodology provides multi-objective decision support, showcasing a significant step forward in manufacturing factory layout design practices.TECHNICAL ABSTRACTRationale: Integrating multi-objective optimization in manufacturing layout planning addresses simultaneous considerations of productivity, worker well-being, and space efficiency, moving beyond traditional, expert-reliant methods that often overlook critical design aspects. Leveraging nature-inspired algorithms and a digital human modeling tool, this study advances a holistic, automated design process in line with Industry 5.0. Purpose: This research demonstrates an innovative approach to manufacturing layout optimization that simultaneously considers worker well-being and system performance. Utilizing the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Particle Swarm Optimization (PSO) alongside a Digital Human Modeling (DHM) tool, the study proposes layouts that equally prioritize ergonomic factors, productivity, and area utilization. Methods: Through a pedal car assembly station case, the study illustrates the transition of layout planning into a transparent, cross-disciplinary, and automated process. This method offers objective decision support, balancing diverse objectives concurrently. Results: The optimization results obtained from the NSGA-II and PSO algorithms represent feasible non-dominated solutions of layout proposals, with the NSGA-II algorithm finding a solution superior in all objectives compared to the expert engineer-designed start solution for the layout. This demonstrates the presented method’s capacity to refine layout planning practices significantly. Conclusions: The study validates the effectiveness of combining multi-objective optimization with digital human modeling in manufacturing layout planning, aligning with Industry 5.0’s emphasis on human-centric processes. It proves that operational efficiency and worker well-being can be simultaneously considered and presents future potential manufacturing design advancements. This approach underscores the necessity of multi-objective consideration for optimal layout achievement, marking a progressive step in meeting modern manufacturing’s complex demands.
  •  
9.
  • Lind, Andreas, 1985-, et al. (författare)
  • Multi-Objective Optimization of Assembly Manufacturing Factory Setups
  • 2021
  • Ingår i: 37th International Manufacturing Conference. - : The Irish Manufacturing Council (IMC). ; , s. 486-498
  • Konferensbidrag (refereegranskat)abstract
    • Factory setup lifecycles are most often described and prepared manually in CAD environments, based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts.This research presents an automated digital method for assembly manufacturing layout planning, where area utilization and ergonomics can be considered simultaneously in a cross-disciplinary manner. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of operator workspace, material façades, aisles, and the sequence to realize the product assembly manufacturing process.To test and develop the digital method, a demonstrator has been developed with adaptation of existing software that simulates and proposes optimized designs of detailed layouts. The method considers productivity, ergonomics, area utilization, and constraints, with a multi-objective optimization approach.In the demonstrator, the input data are sent to the simulation software IPS (Industrial Path Solutions). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following rules and regulations defined in the block layout as well as productivity and ergonomics constraints objectives.The developed demonstrator is promising and can optimize multiple parameters and weight the parameters to fine tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation cross-disciplinary, transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.
  •  
10.
  • Lind, Andreas, 1985-, et al. (författare)
  • Virtual-Simulation-Based Multi-Objective Optimization of an Assembly Station in a Battery Production Factory
  • 2023
  • Ingår i: Systems. - : MDPI. - 2079-8954. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The planning and design process of manufacturing factory layouts is commonly performed using digital tools, enabling engineers to define and test proposals in virtual environments before implementing them physically. However, this approach often relies on the experience of the engineers involved and input from various cross-disciplinary functions, leading to a time-consuming and subjective process with a high risk of human error. To address these challenges, new tools and methods are needed. The Industry 5.0 initiative aims to further automate and assist human tasks, reinforcing the human-centric perspective when making decisions that influence production environments and working conditions. This includes improving the layout planning process by making it more objective, efficient, and capable of considering multiple objectives simultaneously. This research presents a demonstrator solution for layout planning using digital support, incorporating a virtual multi-objective optimization approach to consider safety regulations, area boundaries, workers’ well-being, and walking distance. The demonstrator provides a cross-disciplinary and transparent approach to layout planning for an assembly station in the context of battery production. The demonstrator solution illustrates how layout planning can become a cross-disciplinary and transparent activity while being automated to a higher degree, providing results that support decision-making and balance cross-disciplinary requirements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy