SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindberg Sylvia Professor) "

Sökning: WFRF:(Lindberg Sylvia Professor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergqvist, Claes, 1977- (författare)
  • Arsenic accumulation in plants for food and phytoremediation : Influence by external factors
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Arsenic (As) appears in the environment as various As species, which may vary in plant uptake and toxicity. Moreover, As exposure may vary between habitat due to availability and speciation, both of which are influenced by redox potential. To decrease As uptake, addition of silicate may be a tool.The aim of the study was to investigate how the external factors As availability, plant habitats, silicon and oxygen level, influenced the accumulation and speciation of As in plants for food and phytoremediation in a temperate region. The external factors were chosen due to their previously showed influence on As in plants.The risks with dietary As was investigated by plant As accumulation and speciation in carrot, lettuce and spinach grown in alum shale and glassworks soils, and by the influence of silicon on As accumulation in lettuce in hydroponics. Suitable plants for As phytoremediation was investigated by analysing plants from various habitats, and by the O2 influence on phytofiltration.The results showed that vegetables accumulated more As in soils with higher As extractability, and the As extractability in the rhizosphere was higher than in bulk soil. Also, the As concentration in lettuce was higher in hydroponics than in soil, but silicon reduced the accumulation of As in lettuce in hydroponics. Also, the more toxic inorganic As were the main As species detected in vegetables, compared with the less toxic organic As. For phytoremediation, the results showed a low As accumulation in emergent and terrestrial plants. Submerged plants had had a higher shoot As concentration. In general, the habitat had a major influence on the As accumulation in plants. The results also showed that the As accumulation properties in Elodea canadensis was reduced at higher O2.In conclusion, consumption of vegetables cultivated in As polluted soils can result in an elevated intake of inorganic As, and E. canadensis is a promising candidate for As phytofiltration in a temperate region.
  •  
2.
  •  
3.
  • Javed, Muhammad Tariq, 1983- (författare)
  • Mechanisms behind pH changes by plant roots and shoots caused by elevated concentration of toxic elements
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Toxic elements are present in polluted water from mines, industrial outlets, storm water etc. Wetland plants take up toxic elements and increase the pH of the medium. In this thesis was investigated how the shoots of submerged plants and roots of emergent plants affected the pH of the surrounding water in the presence of free toxic ions. The aim was to clarify the mechanisms by which these plants change the surrounding water pH in the presence of toxic ions. The influence of Elodea canadensis shoots on the pH of the surrounding water was studied in the presence of cadmium (Cd) at low initial pH (4-5). The involvement of photosynthetic activity in the pH changes was investigated in the presence and absence of Cd. The cytosolic, vacuolar and apoplasmic pH changes as well as cytosolic Cd changes in E. canadensis were monitored. The influence of Eriophorum angustifolium roots on the pH of the surrounding water was investigated in the presence of a combination of Cd, copper, lead, zinc and arsenic at low initial pH (3.5). Eriophorum angustifolium root exudates were analyzed for organic acids. Elodea canadensis shoots increased the pH of the surrounding water, an effect more pronounced with increasing Cd levels and/or increasing plant biomass and increased plant Cd uptake. The pH increase in the presence of free Cd ions was not due to photosynthesis or proton uptake across the plasmalemma or tonoplast. Cadmium was initially sequestered in the apoplasm of E. canadensis and caused its acidosis. Eriophorum angustifolium roots increased the surrounding water pH and this effect was enhanced in the presence of arsenic and metals. This pH increase was found to depend partly on the release of oxalic acid, formic acid and succinic acid by the plants. In conclusion, E. canadensis shoots and E. angustifolium roots were found to increase the low initial pH of the surrounding water. The pH modulation by these species was enhanced by low levels of free toxic ions in the surrounding water.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy