SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindblad Andreas Lecturer 1978 ) "

Sökning: WFRF:(Lindblad Andreas Lecturer 1978 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bericat Vadell, Robert, et al. (författare)
  • Single-electron transfer reactions on surface-modified gold plasmons
  • 2023
  • Ingår i: Materials Today Chemistry. - : Elsevier. - 2468-5194. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoredox catalysis's relevance in organic synthesis research and innovation will increase in the coming decades. However, the processes rely almost exclusively on expensive noble metal complexes, most notably iridium complexes, to absorb light and transfer a single charge to a substrate or a catalyst to initiate cascade transformations. Light-triggered plasmon resonances generate a non-Fermi-Dirac energy distribution with many hot carriers that decay in similar to 1 ps. Their ultrafast relaxation makes performing single electron transfer (SET) transformations challenging. Herein, a novel photosystem is proposed based on surface-modified gold nanoparticles (aka plasmon "molecularization"), which improved charge separation and, more importantly, enabled SET reactions, expanding the portfolio of photocatalysts available for photoredox catalysis. The photosystem was made into an electrode, permitting its use in photoelectrochemical arrangements that leverage electro- and photo-chemical approaches' benefits and chemical engineering solutions, helping the synthetic chemistry efforts towards greener synthesis and synthesis of more complex structures on a scale.
  •  
2.
  • Dey, Ananta, et al. (författare)
  • Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO2
  • 2024
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon’s unique photophysics and capabilities because they expedite the carrier’s lifetime.
  •  
3.
  • Fritze, Stefan, et al. (författare)
  • Elemental distribution and fracture properties of magnetron sputtered carbon supersaturated tungsten films
  • 2024
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 477
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of strength and toughness is a major driving force for alloy design of protective coatings, and nanocrystalline tungsten (W)-alloys have shown to be promising candidates for combining strength and toughness. Here we investigate the elemental distribution and the fracture toughness of carbon (C) alloyed W thin films prepared by non-reactive magnetron sputtering. W:C films with up to ~4 at.% C crystallize in a body-centered-cubic structure with a strong 〈hh0〉texture, and no additional carbide phases are observed in the diffraction pattern. Atom probe tomography and X-ray photoelectron spectroscopy confirmed the formation of such a supersaturated solid solution. The pure W film has a hardness ~13 GPa and the W:C films exhibit a peak hardness of ~24 GPa. In-situ micromechanical cantilever bending tests show that the fracture toughness decreases from ~4.5 MPa·m1/2 for the W film to ~3.1 MPa·m1/2 for W:C films. The results show that C can significantly enhance the hardness of W thin films while retaining a high fracture toughness.
  •  
4.
  •  
5.
  • Berggren, Elin, et al. (författare)
  • Charge Transfer in the P(g42T-T) : BBL Organic Polymer Heterojunction Measured with Core-Hole Clock Spectroscopy
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:49, s. 23733-23742
  • Tidskriftsartikel (refereegranskat)abstract
    • The conductivity of organic polymer heterojunction devices relies on the electron dynamics occurring along interfaces between the acceptor and donor moieties. To investigate these dynamics with chemical specificity, spectroscopic techniques are employed to obtain localized snapshots of the electron behavior at selected interfaces. In this study, charge transfer in blends (by weight 10, 50, 90, and 100%) of p-type polymer P(g(4)2T-T) (bithiophene-thiophene) and n-type polymer BBL (poly(benzimidazo-benzo-phenanthroline)) was measured by resonant Auger spectroscopy. Electron spectra emanating from the decay of core-excited states created upon X-ray absorption in the donor polymer P(g(4)2T-T) were measured in the sulfur KL2,3L2,3 Auger kinetic energy region as a function of the excitation energy. By tuning the photon energy across the sulfur K-absorption edge, it is possible to differentiate between decay paths in which the core-excited electron remained on the atom with the core-hole and those where it tunneled away. Analyzing the competing decay modes of these localized and delocalized (charge-transfer) processes facilitated the computation of charge-transfer times as a function of excitation energy using the core-hole clock method. The electron delocalization times derived from the measurements were found to be in the as/fs regime for all polymer blends, with the fastest charge transfer occurring in the sample with an equal amount of donor and acceptor polymer. These findings highlight the significance of core-hole clock spectroscopy as a chemically specific tool for examining the local charge tunneling propensity, which is fundamental to understanding macroscopic conductivity. Additionally, the X-ray absorption spectra near the sulfur K-edge in the P(g(4)2T-T) polymer for different polymer blends were analyzed to compare molecular structure, orientation, and ordering in the polymer heterojunctions. The 50% donor sample exhibited the most pronounced angular dependence of absorption, indicating a higher level of ordering compared to the other weight blends. Our studies on the electron dynamics of this type of all-polymer donor-acceptor systems, in which spontaneous ground-state electron transfer occurs, provide us with critical insights to further advance the next generation of organic conductors with mixed electron-hole conduction characteristics suitable for highly stable electrodes of relevance for electronic, electrochemical, and optoelectronic applications.
  •  
6.
  • Cohen-Azarzar, Dana, et al. (författare)
  • Scalable and highly tunable conductive oxide interfaces
  • 2023
  • Ingår i: APL Materials. - : American Institute of Physics (AIP). - 2166-532X. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting oxide interfaces have attracted considerable attention, motivated by both fundamental science and potential for oxide electronic devices. An important gap for maturing such device technology is scalability and routes to control the electronic properties, which can narrow the device engineering space. Here, we demonstrate and explain the mechanisms of highly tunable conductive oxide interfaces. We synthesized amorphous-crystalline Al2O3/SrTiO3 interfaces using the scalable and industry-compatible atomic layer deposition (ALD) technique. An NH3 plasma pretreatment is employed in the ALD chamber, and its duration is used as a tuning parameter for the electrical properties, where a span of three orders of magnitude in the sheet resistance is observed at room temperature. For the most conductive sample, our results are comparable to the highest carrier density values reported for all-crystalline oxide interfaces prepared with state-of-the-art epitaxial growth techniques, such as pulsed laser deposition. We pinpoint the origin of conductivity to oxygen vacancies caused by the SrTiO3 reduction by the NH3 plasma pretreatment. These results present a simple, scalable, and industry-compatible route for realizing conductive oxide interfaces, with a broad parameter space, offering a versatile and flexible toolkit for oxide device engineering.
  •  
7.
  • Johansson, Fredrik O. L., et al. (författare)
  • A Blyholder mechanism in the chemisorption of N2O on Ni(111) : studied with Auger-photoelectron coincidence spectroscopy
  • 2024
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • In heterogeneous catalysis the surface-adsorbate bond strength is critical for the function of the system. Here we study a series consisting of multilayer, bilayer and monolayer N2O on Ni(111) and employ Auger-photoelectron coincidence spectroscopy (APECS) to study the interaction between the molecule and the substrate directly. We observe intensity in the nitrogen Auger spectra that arise from the interaction between molecule and surface (not observed in free molecules) whereas the oxygen spectra are thickness-independent. Since the two nitrogen atoms of N2O are chemically inequivalent we can assign the intensity present in the bilayer and monolayer cases to orbitals centered on the terminal nitrogen which is closest to the Ni(111) surface. Using ab initio, molecular dynamics and solid-state density functional theory calculations we infer a Blyholder model of the surface bond as consisting of donation from the terminal nitrogen lone-pair valence orbital with back-donation from the metal into the unoccupied orbitals on that nitrogen. This coincidence technique can readily be used to study substrate–adsorbate interactions directly with chemical and orbital specificity — this opens up prospects to study fundamental steps of molecular adsorption and heterogeneous catalysis with unprecedented detail.
  •  
8.
  • R., Rajesh Kumar, et al. (författare)
  • Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits
  • 2024
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 16:15, s. 19225-19234
  • Tidskriftsartikel (refereegranskat)abstract
    • Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.
  •  
9.
  • Sharma, Rahul, et al. (författare)
  • Large-Scale Direct Growth of Monolayer MoS2 on Patterned Graphene for van der Waals Ultrafast Photoactive Circuits
  • 2024
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 16:29, s. 38711-38722
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) van der Waals heterostructures combine the distinct properties of individual 2D materials, resulting in metamaterials, ideal for emergent electronic, optoelectronic, and spintronic phenomena. A significant challenge in harnessing these properties for future hybrid circuits is their large-scale realization and integration into graphene interconnects. In this work, we demonstrate the direct growth of molybdenum disulfide (MoS2) crystals on patterned graphene channels. By enhancing control over vapor transport through a confined space chemical vapor deposition growth technique, we achieve the preferential deposition of monolayer MoS2 crystals on monolayer graphene. Atomic resolution scanning transmission electron microscopy reveals the high structural integrity of the heterostructures. Through in-depth spectroscopic characterization, we unveil charge transfer in Graphene/MoS2, with MoS2 introducing p-type doping to graphene, as confirmed by our electrical measurements. Photoconductivity characterization shows that photoactive regions can be locally created in graphene channels covered by MoS2 layers. Time-resolved ultrafast transient absorption (TA) spectroscopy reveals accelerated charge decay kinetics in Graphene/MoS2 heterostructures compared to standalone MoS2 and upconversion for below band gap excitation conditions. Our proof-of-concept results pave the way for the direct growth of van der Waals heterostructure circuits with significant implications for ultrafast photoactive nanoelectronics and optospintronic applications.
  •  
10.
  • Weng, Yi-Chen, et al. (författare)
  • Spatially and Chemically Resolved Degradation of Fluorine-Free Electrolyte on Silicon/Graphite Surfaces
  • 2024
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 171:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Implementation of fluorine-free electrolytes that are safer and more sustainable than the state-of-the-art highly fluorinated electrolytes requires a thorough understanding of the interphase formation process. This work investigates the effects of LiPF6- and lithium bis(oxalato)borate (LiBOB)-based electrolytes on the electrochemical performance and surface chemistry of graphite, silicon, and silicon-graphite composite electrodes. The LiBOB-based electrolyte degrades more with the presence of silicon in the electrode, and tends to form a thicker solid electrolyte interphase (SEI) layer compared to the LiPF6-based electrolyte. Different degradation distributions were also found in the graphite-silicon composite electrode: The LiPF6 degradation products tend to form on silicon, while the LiBOB degradation products preferentially form on carbon species. These results provide insights into the relationship between electrolytes and electrodes in terms of electrochemical performance, as well as SEI composition and morphology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy