SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lipkin Aleksey) "

Sökning: WFRF:(Lipkin Aleksey)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pankratov, Dmitry, et al. (författare)
  • New nanobiocomposite materials for bioelectronic devices
  • 2015
  • Ingår i: Acta Naturae. - : Park Media. - 2075-8251. ; 7:1, s. 98-101
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed and synthesized nanobiocomposite materials based on graphene, poly(3,4-ethylenedioxythiophene), and glucose oxidase immobilized on the surface of various nanomaterials (gold nanoparticles and multi-walled carbon nanotubes) of different sizes (carbon nanotubes of different diameters). Comparative studies of the possible influence of the nanomaterial’s nature on the bioelectrocatalytic characteristics of glucose-oxidizing bioanodes in a neutral phosphate buffer solution demonstrated that the bioelectrocatalytic current densities of nanocomposite-based bioanodes are only weakly dependent on the size of the nanomaterial and are primarily defined by its nature. The developed nanobiocomposites are promising materials for new bioelectronic devices due to the ease in adjusting their capacitive and bioelectrocatalytic characteristics, which allows one to use them for the production of dual-function electrodes: i.e., electrodes which are capable of generating and storing electric power simultaneously.
  •  
2.
  • Pankratov, Dmitry, et al. (författare)
  • Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells
  • 2015
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 1873-2755 .- 0378-7753. ; 294, s. 501-506
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we detail transparent, flexible, nanostructured, membrane-less and mediator-free glucose/oxygen enzymatic fuel cells, which can be reproducibly fabricated with industrial scale throughput. The electrodes were built on a biocompatible flexible polymer, while nanoimprint lithography was used for their nanostructuring. The electrodes were covered with gold, their surfaces were visualised using scanning electron and atomic force microscopies, and they were also studied spectrophotometrically and electrochemically. The enzymatic fuel cells were fabricated following our previous reports on membrane-less and mediator-free biodevices in which cellobiose dehydrogenase and bilirubin oxidase were used as anodic and cathodic biocatalysts, respectively. The following average characteristics of transparent and flexible biodevices operating in glucose and chloride containing neutral buffers were registered: 0.63 V open-circuit voltage, and 0.6 mu W cm(-2) maximal power density at a cell voltage of 0.35 V. A transparent and flexible enzymatic fuel cell could still deliver at least 0.5 mu W cm(-2) after 12 h of continuous operation. Thus, such biodevices can potentially be used as self-powered biosensors or electric power sources for smart electronic contact lenses. (C) 2015 Elsevier B.V. All rights reserved.
  •  
3.
  • Parunova, Yulia, et al. (författare)
  • Potentially implantable biocathode with the function of charge accumulation based on nanocomposite of polyaniline​/carbon nanotubes
  • 2016
  • Ingår i: Russian journal of electrochemistry. - : Springer. - 1023-1935 .- 1608-3342. ; 52:12, s. 1166-1171
  • Tidskriftsartikel (refereegranskat)abstract
    • A potentially implantable biocathode with the function of charge accumulation based on a nanobiocomposite including multiwall carbon nanotubes, polyaniline, and bilirubin oxidase is developed. The regularities of the functioning of the obtained electrode are studied in air-​satd. phosphate buffer soln., pH 7.4 (PB)​, and also in phosphate buffer soln. contg. redox-​active blood components (BMB)​. The open circuit potential of the biocathode is 0.33 and 0.08 V vs. the SCE in PB and BMB, resp.; it is completely restored after at least three self-​charge​/discharge cycles with connection to resistors with different resistance. Bioelectrocatalytic c.d. of oxygen redn. is 0.50 and 0.42 mA cm-​2 with the residual activity of 78 and 60​% of the initial value after 12 h of continuous operation in PB at 25°C and in BMB at 37°C, resp.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy