SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lips CJM) "

Sökning: WFRF:(Lips CJM)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Hoppener, JWM, et al. (författare)
  • Role of islet amyloid in type 2 diabetes mellitus: consequence or cause?
  • 2002
  • Ingår i: Molecular and Cellular Endocrinology. - 1872-8057. ; 197:1-2, s. 205-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes mellitus (DM2) is characterized metabolically by defects in both insulin secretion and insulin action, resulting in hyperglycemia. Histopathologically, DM2 is characterized by depositions of protein in the pancreatic islets. This 'islet amyloid' is present in > 90% of patients with DM2, as well as in monkeys and cats with DM2. The pathogenesis of DM2 is heterogeneous and multifactorial, although insulin resistance seems to be the predominant initiating factor for development of the disease. In the longer term, an insulin secretion defect is also revealed (referred to as 'beta-cell failure'), resulting in clinically manifest diabetes. Recent data, particularly from transgenic mouse studies, indicate that islet amyloidosis is a diabetogenic factor, which is both consequence (of insulin resistance) and cause (of beta-cell failure) of DM2. Available transgenic mouse models with islet amyloid formation in vivo will provide the opportunity to assess the effectiveness of novel anti-amyloidogenic therapies, for which promising results are emerging. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Wong, HY, et al. (författare)
  • Postnatally disturbed pancreatic islet cell distribution in human islet amyloid polypeptide transgenic mice
  • 2003
  • Ingår i: Regulatory Peptides. - 1873-1686. ; 113:1-3, s. 89-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Islet amyloid polypeptide (IAPP)/amylin is produced by the pancreatic islet beta-cells, which also produce insulin. To study potential functions of IAPP, we have generated transgenic mice overexpressing human IAPP (hIAPP) in the beta-cells. These mice show a diabetic phenotype when challenged with an oral glucose load. In this study, we examined the islet cytoarchitecture in the hIAPP mice by examining islet cell distribution in the neonatal period, as well as 1, 3 and 6 months after birth. Results: Neonatal transgenic mice exhibited normal islet cell distribution with beta-cells constituting the central islet portion, whereas glucagon and somatostatin-producing cells constituted the peripheral zone. In contrast, in hIAPP transgenic mice at the age of 1 month, the glucagon-immunoreactive (IR) cells were dispersed throughout the islets. Furthermore, at the age of 3 and 6 months, the islet organisation was similarly severely disturbed as at 1 month. Expression of both endogenous mouse IAPP and transgenic hIAPP was clearly higher in 6-month-old mice as compared to newborns, as revealed by mRNA in situ hybridisation. Conclusions: Mice transgenic for hIAPP have islets with disrupted islet cytoarchitecture in the postnatal period, particularly affecting the distribution of glucagon-IR cells. This islet cellular phenotype of hIAPP transgenic mice is similar to that of other mouse models of experimental diabetes and might contribute to the impaired glucose homeostasis. (C) 2003 Elsevier Science B.V All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy