SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Chenjuan 1988 ) "

Search: WFRF:(Liu Chenjuan 1988 )

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Zhaohui, et al. (author)
  • Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes : A Combined Experimental and Theoretical Study
  • 2018
  • In: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 122:41, s. 23352-23363
  • Journal article (peer-reviewed)abstract
    • Herein, the manufacturing of a free-standing N-doped mesoporous carbon (CPPY) paper by straightforward carbonization of polypyrrole-coated nanocellulose paper is described. The deposition of Na and Li on these CPPY electrodes, which also serve as current collectors, is studied using a combination of experiments and theoretical calculations. The porous CPPY electrodes gave rise to decreased current densities, which helped to prolong the life-time of the Na electrodes. While the density functional theory calculations suggest that both Na and Li should be deposited uniformly on the CPPY electrodes, the experimental results clearly show that the sodium deposition was more well-defined on the surface of the CPPY electrodes. In contrast to Li, dendrite-free Na depositions could be carried out using deposition capacities up to 12 mAh cm(-2 )and a stable Na electrode cycling performance was found during 1000 h at 1 mA cm(-2). The results suggest that it was difficult to predict the Na or Li deposition behavior merely based on calculations of the metal adsorption energies, as kinetic effects should also be taken into account. Nevertheless, the experimental results clearly show that the use of the present type of porous electrodes provides new possibilities for the development of durable Na electrodes for high-performance sodium metal batteries.
  •  
2.
  • Gao, Jing, et al. (author)
  • Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst
  • 2019
  • In: Joule. - : CELL PRESS. - 2542-4351. ; 3:12, s. 2930-2941
  • Journal article (peer-reviewed)abstract
    • Developing efficient, stable, and cost-effective photosystems to split water into hydrogen and oxygen using sunlight is of paramount importance for future production of fuels and chemicals from renewable sources. However, the high cost of current systems limits their widespread application. Here, we developed a highly efficient TiC-supported Pt nanocluster catalyst for hydrogen evolution reaction that rivals the commercial Pt/C catalyst with 5 times less Pt loading. Combining with the NiFe-layered double hydroxide for oxygen evolution reaction and driven for the first time by a monolithic perovskite/silicon tandem solar cell, we achieved a solar water splitting system with 18.7% solar-to-hydrogen conversion efficiency, setting a record for water splitting systems with earth-abundant and inexpensive photo-absorbers.
  •  
3.
  • Liu, Chenjuan, 1988-, et al. (author)
  • 3-D binder-free graphene foam as cathode for high capacity Li-O2 batteries
  • 2016
  • In: Journal of Materials Chemistry A. - 2050-7488. ; 4:25, s. 9767-9773
  • Journal article (pop. science, debate, etc.)abstract
    • To provide energy densities higher than those of conventional Li-ion batteries, a Li–O2 battery requires a cathode with high surface area to host large amounts of discharge product Li2O2. Therefore, reversible formation of discharge products needs to be investigated in Li–O2 cells containing high surface area cathodes. In this study, a binder-free oxygen electrode consisting of a 3-D graphene structure on aluminum foam, with a high defect level (ID/IG = 1.38), was directly used as the oxygen electrode in Li– O2 batteries, delivering a high capacity of about 9 *104 mA h g-1 (based on the weight of graphene) at the first full discharge using a current density of 100 mA ggraphene-1 . This performance is attributed to the 3-D porous structure of graphene foam providing both an abundance of available space for the deposition of discharge products and a high density of reactive sites for Li–O2 reactions. Furthermore, the formation of discharge products with different morphologies and their decomposition upon charge were observed by SEM. Some nanoscaled LiOH particles embedded in the toroidal Li2O2 were detected by XRD and visualized by TEM. The amount of Li2O2 formed at the end of discharge was revealed by a titration method combined with UV-Vis spectroscopy analysis. 
  •  
4.
  • Liu, Chenjuan, 1988-, et al. (author)
  • A free standing Ru–TiC nanowire array/carbon textile cathode with enhanced stability for Li–O2 batteries
  • 2018
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6, s. 23659-23668
  • Journal article (peer-reviewed)abstract
    • The instability of carbon cathode materials is one of the key problems that hinder the development of lithium–air/lithium–oxygen (Li–O2) batteries. In this contribution, a type of TiC-based cathode is developed as a suitable alternative to carbon based cathodes, and its stability with respect to its surface properties is investigated. Here, a free-standing TiC nanowire array cathode was in situ grown on a carbon textile, covering its exposed surface. The TiC nanowire array, via deposition with Ru nanoparticles, showed enhanced oxygen reduction/evolution activity and cyclability, compared to the one without Ru modification. The battery performance of the Li–O2cells with Ru–TiC was investigated by using in operando synchrotron radiation powder X-ray diffraction (SR-PXD) during a full cycle. With the aid of surface analysis, the role of the cathode substrate and surface modification is demonstrated. The presented results are a further step toward a wise design of stable cathodes for Li–O2 batteries.
  •  
5.
  • Liu, Chenjuan, 1988- (author)
  • Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Non-aqueous metal-air (Li-O2 and Na-O2) batteries have been emerging as one of the most promising high-energy storage systems to meet the requirements for demanding applications due to their high theoretical specific energy. In the present thesis work, advanced characterization techniques are demonstrated for the exploration of metal-O2 batteries. Prominently, the electrochemical reactions occurring within the Li-O2 and Na-O2 batteries upon cycling are studied by in operando powder X-ray diffraction (XRD).In the first part, a new in operando cell with a combined form of coin cell and pouch cell is designed. In operando synchrotron radiation powder X-ray diffraction (SR-PXD) is applied to investigate the evolution of Li2O2 inside the Li-O2 cells with carbon and Ru-TiC cathodes. By quantitatively tracking the Li2O2 evolution, a two-step process during growth and oxidation is observed.This newly developed analysis technique is further applied to the Na-O2 battery system. The formation of NaO2 and the influence of the electrolyte salt are followed quantitatively by in operando SR-PXD. The results indicate that the discharge capacity of Na-O2 cells containing a weak solvating ether solvent depends heavily on the choice of the conducting salt anion, which also has impact on the growth of NaO2 particles.In addition, the stability of the discharge product in Na-O2 cells is studied. Using both ex situ and in operando XRD, the influence of sodium anode, solvent, salt and oxygen on the stability of NaO2 are quantitatively identified. These findings bring new insights into the understanding of conflicting observations of different discharge products in previous studies.In the last part, a binder-free graphene based cathode concept is developed for Li-O2 cells. The formation of discharge products and their decomposition upon charge, as well as different morphologies of the discharge products on the electrode, are demonstrated. Moreover, considering the instability of carbon based cathode materials, a new type of titanium carbide on carbon cloth cathode is designed and fabricated. With a surface modification by loading Ru nanoparticles, the titanium carbide shows enhanced oxygen reduction/evolution activity and stability. Compared with the carbon based cathode materials, titanium carbide demonstrated a higher discharge and charge efficiency.
  •  
6.
  • Liu, Chenjuan, 1988-, et al. (author)
  • Growth of NaO2 in Highly Efficient Na–O2 Batteries Revealed by Synchrotron In Operando X-ray Diffraction
  • 2017
  • In: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 2, s. 2440-2444
  • Journal article (other academic/artistic)abstract
    • The development of Na–O2 batteries requires understanding the formation of reaction products, as different groups reported compounds such as sodium peroxide, sodium superoxide, and hydrated sodium peroxide as the main discharge products. In this study, we used in operando synchrotron radiation powder X-ray diffraction (SR-PXD) to (i) quantitatively track the formation of NaO2 in Na–O2 cells and (ii) measure how the growth of crystalline NaO2 is influenced by the choice of electrolyte salt. The results reveal that the discharge could be divided into two time regions and that the formation of NaO2 during the major part of the discharge reaction is highly efficient. The findings indicate that the cell with NaOTf salt exhibited higher capacity than the cell with NaPF6 salt, whereas the average domain size of NaO2 particles decreases during the discharge. This fundamental insight brings new information on the working mechanism of Na–O2 batteries.
  •  
7.
  •  
8.
  •  
9.
  • Liu, Chenjuan, 1988- (author)
  • Li2O2 quantification in non-aqueous Li-O2 batteries with binder-free cathodes
  • 2017
  • Licentiate thesis (other academic/artistic)abstract
    • The non-aqueous Li-air (Li-O2) battery has been emerging as one of the most promising high-energy storage systems to meet the requirements for electric vehicle applications due to its high theoretical energy density. In order to uncover the underlying electrochemistry and enable an informed battery design, it is crucial to gain a detailed understanding of the cell´s chemical components as well as its behavior during cycling.    These two fundamental tasks are reflected in this thesis’ structure: First, advanced characterization techniques are demonstrated in the search for a novel cathode material for Li-O2 batteries. Second, the electrochemical reactions occurring within the battery upon cycling are studied by in operando powder X-ray diffraction.    In the first part, a novel free-standing oxygen cathode was prepared by a facile and efficient solution-process followed by a low-temperature exfoliation, which displayed a 3-D structure arrangement of graphene foam (GF) derived from a graphene oxide (GO) gel on an aluminum substrate (GF@Al). The as prepared GF@Al was directly used as cathode in Li-O2 batteries without any binder and catalyst, delivering a high capacity about 9×104 mA h·g-1 (based on the weight of graphene) or about 60 mAh·g-1 (based on the weight of the whole electrode) at the first discharge with a current density of 100 mA·ggraphene-1. Furthermore, electrodes have been investigated by X-ray diffraction (XRD), Fourier-transform infrared reflection (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis spectroscopy titration. The formation of a discharge product and its decomposition upon charge as well as different morphologies of discharge products on the electrode were observed by SEM and TEM.    In the second part, the evolution of Li2O2 was investigated by synchrotron radiation powder X-ray diffraction (SR-PXD). By quantitatively tracking Li2O2 under the actual electrochemical conditions, a two-step process during growth and oxidation is observed for Li2O2. This is due to different evolution steps during the two stages of both oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). By analyzing the anisotropic broadening of Li2O2 X-ray diffraction peaks, anisotropic disc-like Li2O2 grains were found to be formed rapidly in the first step of discharge, followed by a nucleation and growth of toroidal Li2O2 particles with a LiO2-like surface. During the charging process, Li2O2 was oxidized from the surface first, followed by an oxidation process with a higher decomposition rate for the bulk. This new analysis technique brings additional information on the evolution of Li2O2 in Li-O2 batteries.
  •  
10.
  • Liu, Chenjuan, 1988-, et al. (author)
  • On the Stability of NaO2 in Na–O2 Batteries
  • 2018
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:16, s. 13534-13541
  • Journal article (peer-reviewed)abstract
    • Na–O2 batteries are regarded as promising candidates for energy storage. They have higher energy efficiency, rate capability, and chemical reversibility than Li–O2 batteries; in addition, sodium is cheaper and more abundant compared to lithium. However, inconsistent observations and instability of discharge products have inhibited the understanding of the working mechanism of this technology. In this work, we have investigated a number of factors that influence the stability of the discharge products. By means of in operando powder X-ray diffraction study, the influence of oxygen, sodium anode, salt, solvent, and carbon cathode were investigated. The Na metal anode and an ether-based solvent are the main factors that lead to the instability and decomposition of NaO2 in the cell environment. This fundamental insight brings new information on the working mechanism of Na–O2 batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view