SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Cunming) "

Sökning: WFRF:(Liu Cunming)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Cunming, et al. (författare)
  • Asynchronous Photoexcited Electronic and Structural Relaxation in Lead-Free Perovskites
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:33, s. 13074-13080
  • Tidskriftsartikel (refereegranskat)abstract
    • Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elemental-specific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2 - dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 μs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework. ©
  •  
2.
  • Wang, Yingqi, et al. (författare)
  • Visualizing Light-Induced Microstrain and Phase Transition in Lead-Free Perovskites Using Time-Resolved X-Ray Diffraction
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:12, s. 5335-5341
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have emerged as promising materials for optoelectronic applications in the last decade. A large amount of effort has been made to investigate the interplay between the crystalline lattice and photoexcited charge carriers as it is vital to their optoelectronic performance. Among them, ultrafast laser spectroscopy has been intensively utilized to explore the charge carrier dynamics of perovskites, from which the local structural information can only be extracted indirectly. Here, we have applied a time-resolved X-ray diffraction technique to investigate the structural dynamics of prototypical two-dimensional lead-free halide perovskite Cs3Bi2Br9nanoparticles across temporal scales from 80 ps to microseconds. We observed a quick recoverable (a few ns) photoinduced microstrain up to 0.15% and a long existing lattice expansion (∼a few hundred nanoseconds) at mild laser fluence. Once the laser flux exceeds 1.4 mJ/cm2, the microstrain saturates and the crystalline phase partially transfers into a disordered phase. This photoinduced transient structural change can recover within the nanosecond time scale. These results indicate that photoexcitation of charge carriers couples with lattice distortion, which fundamentally affects the dielectric environment and charge carrier transport.
  •  
3.
  • Yu, Cunming, et al. (författare)
  • Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing
  • 2020
  • Ingår i: Chemical Engineering Research and Design. - : Elsevier BV. - 0263-8762 .- 1744-3563. ; 155, s. 48-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Nature-inspired self-cleaning surfaces have attracted considerable attention from both fundamental research and practical applications. This review adopts a chemical-engineering point of view and focuses on mechanisms, modelling, and manufacturing (M3) of nature-inspired self-cleaning surfaces. We will introduce six nature-inspired self-cleaning mechanisms: The Lotus-effect, superhydrophobic-induced droplet jumping, superhydrophobic-induced unidirectional movement of water droplet, underwater-superoleophobic-based self-cleaning, slippery-based self-cleaning, and dry self-cleaning. These mechanisms of nature self-cleaning examples are popular and well-known as well as have been widely applied or exhibited potential applications in our daily life and industrial productions. The mathematical and numerical modelling of the identified self-cleaning mechanisms will be carefully introduced, which will contribute to the rational design and reproducible construction of these functional self-cleaning surfaces. Finally, we will discuss how these materials can be produced, with a focus on scalable manufacturing. We hope this review will strengthen the understanding on nature-inspired self-cleaning surfaces and stimulate interdisciplinary collaboration of material science, biology and engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy