SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Hanyu) "

Sökning: WFRF:(Liu Hanyu)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Zhang, Xinyu, et al. (författare)
  • Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the prediction of the zinc-blende structure BP into a novel C2/m phase from 113 to 208 GPa which possesses zigzag phosphorus chain structure, followed by another P4(2)/mnm structure above 208 GPa above using the particle-swarm search method. Strong electron-phonon coupling lambda in compressed BP is found, in particular for C2/m phase with the zigzag phosphorus chain, which has the highest lambda (0.56-0.61) value among them, leading to its high superconducting critical temperature T-c (9.4 K-11.5 K), which is comparable with the 4.5 Kto 13 Kvalue of black phosphorus phase I (orthorhombic, Cmca). This is the first system in the boron phosphides which shows superconductivity from the present theoretical calculations. Our results show that pressure-induced zigzag phosphorus chain in BP exhibit higher superconducting temperature T-C, opening a new route to search and design new superconductor materials with zigzag phosphorus chains.
  •  
3.
  • Li, Qian, et al. (författare)
  • Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae
  • 2023
  • Ingår i: BMC Microbiology. - 1471-2180. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In bioethanol production, the main by-product, 5-hydroxymethylfurfural (HMF), significantly hinders microbial fermentation. Therefore, it is crucial to explore genes related to HMF tolerance in Saccharomyces cerevisiae for enhancing the tolerance of ethanol fermentation strains. A comprehensive analysis was conducted using genome-wide deletion library scanning and SGAtools, resulting in the identification of 294 genes associated with HMF tolerance in S. cerevisiae. Further KEGG and GO enrichment analysis revealed the involvement of genes OCA1 and SIW14 in the protein phosphorylation pathway, underscoring their role in HMF tolerance. Spot test validation and subcellular structure observation demonstrated that, following a 3-h treatment with 60mM HMF, the SIW14 gene knockout strain exhibited a 12.68% increase in cells with abnormal endoplasmic reticulum (ER) and a 22.41% increase in the accumulation of reactive oxygen species compared to the BY4741 strain. These findings indicate that the SIW14 gene contributes to the protection of the ER structure within the cell and facilitates the clearance of reactive oxygen species, thereby confirming its significance as a key gene for HMF tolerance in S. cerevisiae.
  •  
4.
  • Liao, Hong, et al. (författare)
  • Genome-wide identification of resistance genes and response mechanism analysis of key gene knockout strain to catechol in Saccharomyces cerevisiae
  • 2024
  • Ingår i: FRONTIERS IN MICROBIOLOGY. - 1664-302X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6 Delta) is the most sensitive to CA. Based on the omics analysis of ERG6 Delta under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP(+) were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6 Delta. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.
  •  
5.
  • Ren, Hanyu, et al. (författare)
  • Untangling the effects of climate variation and human interference on grassland dynamics in North China
  • 2024
  • Ingår i: Land Degradation and Development. - 1085-3278 .- 1099-145X. ; 35:1, s. 467-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic and anthropogenic disturbances play pivotal roles in shaping the dynamics of grassland. Quantifying their impacts on grassland variation is essential to ensure sustainable grassland management. In this study, we employed the Thornthwaite Memorial and Carnegie-Ames-Stanford-approach (CASA) models to investigate the spatiotemporal effects of these two variables on grassland variation in northern China from 2000 to 2016, using the net primary productivity (NPP) as a measure. Our findings reveal that approximately 25.92% of the grassland in northern China experienced degradation, while restored grasslands occupied 45% of the total grassland area. The average grassland actual NPP (ANPP) and human-induced NPP decreased at rates of -0.60 and -5.62 gC m-2 a-1, respectively. Conversely, potential NPP exhibited an upward trend with an average increase of 2.27 gC m-2 a-1. Furthermore, grassland ANPP showed a projected increase in most parts of northern China. Climate change emerged as the primary driver for grassland restoration in Xinjiang, Qinghai, and Inner Mongolia, leading to an increase of 21582.79 Gg C in grassland NPP. In contrast, human activities were the dominant catalysts for grassland degradation, resulting in a reduction of 51932.3 Gg C in grassland NPP. Human-induced grassland degradation was ubiquitous in northwest and northeast China. With the exception of slope grassland, climate change primarily influenced the restoration of most grassland types, while human activities were the primary cause of degradation. Our analysis indicated a strong correlation between temperature and grassland degradation, while precipitation played a pivotal role in grassland restoration in northern China. Human interference demonstrated both positive and negative impacts on grassland changes. In conclusion, the increase in precipitation and the implementation of ecological restoration plans have effectively promoted the restoration of grasslands in northern China.
  •  
6.
  • Ren, Hanyu, et al. (författare)
  • Vegetation response to changes in climate across different climate zones in China
  • 2023
  • Ingår i: Ecological Indicators. - 1470-160X .- 1872-7034. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation growth is sensitive to climate change. The complex climate types of China pose great challenges to the sustainable management of vegetation on global change. Therefore, this study used Enhanced Vegetation Index (EVI) as an indicator to explore the spatiotemporal dynamics of vegetation and their driving factors in different climatic zones of China to provide theoretical support for sustainable vegetation management in different climate zones in the future. The results showed that vegetation exhibited considerable clustering patterns in the country, with high and low values concentrated in the eastern and western regions, respectively. From 2001 to 2020, both at regional and pixel scales, vegetation in China showed a significant greening trend. EVI displayed a noticeable increase within temperate and subtropical areas. The only exception is observed in the eastern coastal area of the North China Plain and Yangtze River Delta region, which experienced evident degradation trend. During this period, China's climate showed an overall trend towards warming and humidification with drying trends observed mainly over the western regions. The impact of climate changes resulted in EVI dynamics that vary over time and space. The vegetation change in China was mainly derived by changes in precipitation and radiation rather than temperature, especially in temperate and subfrigid regions. Precipitation was the main driving factor for vegetation greening in tropical and temperate regions, while radiation and temperature were the dominant climate factor for vegetation greening in subfrigid and subtropical regions, respectively. When precipitation was no longer a limiting factor for vegetation growth, the effect of temperature or radiation increases. In addition, the positive impact of precipitation on plant growth in temperate regions was much greater than that of radiation and temperature, and this difference was much greater than in tropical, subtropical, and subfrigid regions.
  •  
7.
  • Tang, Hu, et al. (författare)
  • Boron-Rich Molybdenum Boride with Unusual Short-Range Vacancy Ordering, Anisotropic Hardness, and Superconductivity
  • 2020
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 32:1, s. 459-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Determination of the structures of materials involving more light elements such as boron-rich compounds is challenging and technically important in understanding their varied compositions and superior functionalities. Here we resolve the long-standing uncertainties in structure and composition about the highest boride (termed MoB4, Mo1-xB3, or MoB3) through the rapid formation of large sized boron-rich molybdenum boride under pressure. Using high-quality single-crystal X-ray diffraction analysis and aberration-corrected scanning transmission electron microscopy, we reveal that boron-rich molybdenum boride with a composition of Mo0.757B3 exhibits P6(3)/mmc symmetry with a partial occupancy of 0.514 in 211 Mo sites (Mol), and direct observations reveal the short-range ordering of cation vacancies in (010) crystal planes. Large anisotropic Young's moduli and Vickers hardness are seen for Mo0.757B3, which may be attributed by its two-dimensional boron distributions. Mo0.757B3 is also found to be superconducting with a transition temperature (T-c) of 2.4 K, which was confirmed by measurements of resistivity and magnetic susceptibility. Theoretical calculations suggest that the partial occupancy of Mo atoms plays a crucial role in the emergence of superconductivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy