SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Jianming) "

Sökning: WFRF:(Liu Jianming)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Jingjing, et al. (författare)
  • Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma
  • 2020
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 105:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Pheochromocytomas and paragangliomas (PPGLs) are characterized by distinct genotype-phenotype relationships according to studies largely restricted to Caucasian populations.Objective: To assess for possible differences in genetic landscapes and genotype-phenotype relationships of PPGLs in Chinese versus European populations.Design: Cross-sectional study.Setting: 2 tertiary-care centers in China and 9 in Europe.Participants: Patients with pathologically confirmed diagnosis of PPGL, including 719 Chinese and 919 Europeans.Main Outcome Measures: Next-generation sequencing performed in tumor specimens with mutations confirmed by Sanger sequencing and tested in peripheral blood if available. Frequencies of mutations were examined according to tumor location and catecholamine biochemical phenotypes.Results: Among all patients, higher frequencies of HRAS, FGFR1, and EPAS1 mutations were observed in Chinese than Europeans, whereas the reverse was observed for NF1, VHL, RET, and SDHx. Among patients with apparently sporadic PPGLs, the most frequently mutated genes in Chinese were HRAS (16.5% [13.6-19.3] vs 9.8% [7.6-12.1]) and FGFR1 (9.8% [7.6-12.11 vs 2.2% [1.1-3.3]), whereas among Europeans the most frequently mutated genes were NF1 (15.9% [13.2-18.6) vs 6.6% [4.7-8.5)) and SDHx (10.7% [8.4-13.0] vs 4.2% [2.6-5.7]). Among Europeans, almost all paragangliomas lacked appreciable production of epinephrine and identified gene mutations were largely restricted to those leading to stabilization of hypoxia inducible factors. In contrast, among Chinese there was a larger proportion of epinephrine-producing paragangliomas, mostly due to HRAS and FGFR1 mutations.Conclusions: This study establishes Sino-European differences in the genetic landscape and presentation of PPGLs, including ethnic differences in genotype-phenotype relationships indicating a paradigm shift in our understanding of the biology of these tumors.
  •  
2.
  • Li, Danqin, et al. (författare)
  • Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.
  •  
3.
  •  
4.
  • Xiong, Shaobing, et al. (författare)
  • Defect-Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells
  • 2020
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells are a highly competitive candidate for next-generation photovoltaic technology. Defects in the perovskite grain boundaries and on the film surfaces however have significant impacts on both the device efficiency and environmental stability. Herein, a strategy using organic dyes as additives to passivate the defect states and produce more n-type perovskite films, thereby improving charge transport and decreasing charge recombination, is reported. Based on this strategy, the power conversion efficiency of the perovskite solar cell is significantly increased from 18.13% to 20.18% with a negligible hysteresis. Furthermore, the rich hydrogen bonds and carbonyl structures in the organic dye can significantly enhance device stability both in terms of humidity and thermal stress. The results present a promising pathway using abundant and colorful organic dyes as additives to achieve high-performance perovskite solar cells.
  •  
5.
  • Xiong, Shaobing, et al. (författare)
  • Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability
  • 2019
  • Ingår i: Advanced Optical Materials. - : WILEY-V C H VERLAG GMBH. - 2162-7568 .- 2195-1071. ; 7:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The cathode interface plays a critical role in achieving high-performance fullerene/perovskite planar solar cells. Herein, the simple molecule Isatin and its derivatives are introduced at the back contact [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/Al as a cathode modification interlayer. It is revealed that the Isatin interlayers facilitate electron transport/extraction and suppress electron recombination, attributed to the formation of negative dipole potential steps and the passivation of the interfacial trap density. The average power conversion efficiencies of the resulting devices are significantly improved by 11% from 17.68% to 19.74%, with an enhancement in all device parameters including short-circuit current, open-circuit voltage, and fill factor. The hysteresis index is found to disappear. In addition, such interlayer enhances device stability under ambient conditions compared to the control devices due to suppression of moisture-induced degradation of the perovskite films. These findings provide a comprehensive understanding of the engineering of the back contact between PCBM and the metal electrode to improve efficiency and stability of perovskite solar cells.
  •  
6.
  • Zhou, Yongqiang, et al. (författare)
  • Rainstorm events shift the molecular composition and export of dissolved organic matter in a large drinking water reservoir in China : High frequency buoys and field observations
  • 2020
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Rainstorm events can flush large amounts of terrestrial organic-rich material into lakes that are used for drinking water. To date, few studies have been carried out to investigate how rainstorm events change the molecular composition, bio-lability, and flux of upstream-imported dissolved organic matter (DOM), which can impact the odor and taste of drinking water as well as the efficiency of wastewater treatment. We undertook high-frequency buoy monitoring and point sample collection (n = 495), during high, moderate, and low inflow discharge, in Lake Qiandao, a key drinking water source for about 10 million people. Data from two online fluorescent DOM sensors deployed and field samples collected at the river site, Jiekou, and the lake site, Xiaojinshan, showed that rainstorm events increased the specific UV absorbance (SUVA254), humification index (HIX), humic-like components (C1-C2), and FT-ICR MS derived condensed aromatic and polyphenolic compounds (p < 0.001) and decreased the spectral slope of DOM (S275–295), spectral slope ratio (SR), biological index (BIX), and highly bio-degradable peptide-like and aliphatic substances (p < 0.001). Our results suggest that rainstorm events enhanced the export to the lake of colored, hydrophobic, and aromatic DOM. Upstream-derived dissolved organic carbon (DOC) concentrations decreased (p < 0.001), while DOC bio-availability (BDOC) increased only slightly (p < 0.05) during rainstorm events. The loss rate of DOC in Lake Qiandao is 0.82 × 104 t C yr−1, of which 0.30 × 104 t C yr−1 is highly bio-labile, and higher occurrences of both ≥ 25 mm d − 1 and ≥ 50 mm d − 1 rainfall events are anticipated by linear fittings for this region in the future. The application of in situ fluorescence sensors provides an early warning of DOC surge incidents caused by rainstorm events and may be useful in advising drinking water treatment plant managers of changes in raw water DOM quality and treatability.
  •  
7.
  • Bao, Qinye, et al. (författare)
  • The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:7, s. 6491-6497
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy offset between the electrode Fermi level and organic semiconductor transport levels is a key parameter controlling the charge injection barrier and hence efficiency of organic electronic devices. Here, we systematically explore the effect of in situ oxygen exposure on energetics in n-type conjugated polymer P(NDI2OD-T2) films. The analysis reveals that an interfacial potential step is introduced for a series of P(NDI2OD-T2) electrode contacts, causing a nearly constant downshift of the vacuum level, while the ionization energies versus vacuum level remain constant. These findings are attributed to the establishment of a so-called double-dipole step via motion of charged molecules and will modify the charge injection barriers at electrode contact. We further demonstrate that the same behavior occurs when oxygen interacts with p-type polymer TQ1 films, indicating it is possible to be a universal effect for organic semiconductOrs.
  •  
8.
  • Liu, Shucheng, et al. (författare)
  • Graphene oxide based molecularly imprinted polymers with double recognition abilities : The combination of covalent boronic acid and traditional non-covalent monomers
  • 2016
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 290, s. 220-231
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, graphene oxide (GO) based molecularly imprinted polymers with double recognition abilities (DR-MIPs) were prepared and considered as adsorbent for the specific recognition and capture of luteolin (LTL). To exhibit the tightest binding hosts for LTL, the double recognition abilities were achieved by adopting 4-vinylphenyl boronic acid (BA) and methacrylic acid (MAA) to be the covalent and non covalent imprinted monomers, respectively. Then, their functional groups and shape of imprinted sites endowed DR-MIPs with a specific affinity for cis-diol-containing structure, hydroxyl and carbonyl groups of LTL. The results of batch mode experiments indicated kinetic equilibrium time and binding capacity of DR-MIPs were 30 min and 56.27 mg g(-1) at 298 K, respectively. The Langmuir isotherm and pseudo second-order kinetic models were the main adsorption mechanisms for DR-MIPs, and the fast adsorption and large binding amount were resulted from the two-dimensional (2D) structure of GO and enough imprinted sites with double recognition abilities. DR-MIPs also showed excellent recognition ability, and the estimated relative selectivity coefficients (k') for structural analog quercetin (QRT), hydroquinone (HDQ) and p-nitrophenol (P-NP) were 13.73, 18.62 and 19.95, respectively. In addition, DR-MIPs possessed outstanding reusability and enhanced purification property for 85% raw LTL. The purified LTL products achieved approximately 93.47%, and they exhibited the obvious antibacterial performance.
  •  
9.
  • Liu, Shucheng, et al. (författare)
  • Interface-induced growth of boronate-based metal-organic framework membrane on porous carbon substrate for aqueous phase molecular recognition
  • 2017
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 324, s. 216-227
  • Tidskriftsartikel (refereegranskat)abstract
    • For metal-organic frameworks (MOFs), introduction of special functional groups and integration on porous support will endow the MOF with specific molecular affinity and tunable membrane-like surface properties. Herein, we demonstrated a facile interface-induced Zn(II)-ligand-fragment co-assembly strategy to in situ fabricate boronate-based MOF membrane on hydrophobic porous carbon substrate for specific molecular recognition and separation. Due to the phenylboronic acid groups and hydrophobic porous carbon supporting layer, a catechol-containing medicinal natural flavone Luteolin was found to be efficiently and selectively recognized on the MOF composite in water-containing solution. As compared to the separated MOF particles and carbon substrate, the MOF composite exhibited similar adsorption kinetics but significant higher adsorption capacity in static separation. Dynamic separation also revealed that the MOF composite could achieve a desirable maximum adsorption capacity under mild separation condition, implying its applicability in industrial application. As a proof of this concept, a commercially available Luteolin with 85% purity could be easily extracted and concentrated to 99.90% purity by the MOF composite in highly aqueous solution, and the products possessed the similar antibacterial performance with standard substance. These results demonstrated that, a membrane-like functionalized MOF composite with enhanced surface hydrophobicity and improved molecular specificity has great potential for separation of industrial and even biological samples under water compatible conditions. (C) 2017 Elsevier B. V. All rights reserved.
  •  
10.
  • Park, Se Hyung, et al. (författare)
  • A luminescence-based protocol for assessing fructose metabolism via quantification of ketohexokinase enzymatic activity in mouse or human hepatocytes
  • 2021
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ketohexokinase (KHK) catalyzes the first step of fructose metabolism. Inhibitors of KHK enzymatic activity are being evaluated in clinical trials for the treatment of non-alcoholic fatty liver disease (NAFLD) and diabetes. Here, we present a luminescence-based protocol to quantify KHK activity. The accuracy of this technique has been validated using knockdown and overexpression of KHK in vivo and in vitro. The specificity of the assay has been verified using 3-O-methyl-D-fructose, a non-metabolizable analog of fructose, heat inactivation of hexokinases, and depletion of potassium. For complete details on the use of this protocol, please refer to Damen et al. (2021).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy