SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Xiyue) "

Sökning: WFRF:(Liu Xiyue)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Anying, et al. (författare)
  • Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients
  • 2020
  • Ingår i: International Journal of Antimicrobial Agents. - : ELSEVIER. - 0924-8579 .- 1872-7913. ; 56:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The crude mortality rate in critical pneumonia cases with coronavirus disease 2019 (COVID-19) reaches 49%. This study aimed to test whether levels of blood urea nitrogen (BUN) in combination with D-dimer were predictors of in-hospital mortality in COVID-19 patients. The clinical characteristics of 305 COVID19 patients were analysed and were compared between the survivor and non-survivor groups. Of the 305 patients, 85 (27.9%) died and 220 (72.1%) were discharged from hospital. Compared with discharged cases, non-survivor cases were older and their BUN and D-dimer levels were significantly higher ( P < 0.0 0 01). Least absolute shrinkage and selection operator (LASSO) and multivariable Cox regression analyses identified BUN and D-dimer levels as independent risk factors for poor prognosis. Kaplan-Meier analysis showed that elevated levels of BUN and D-dimer were associated with increased mortality (logrank, P 0.0 0 01). The area under the curve for BUN combined with D-dimer was 0.94 (95% CI 0.90-0.97), with a sensitivity of 85% and specificity of 91%. Based on BUN and D-dimer levels on admission, a nomogram model was developed that showed good discrimination, with a concordance index of 0.94. Together, initial BUN and D-dimer levels were associated with mortality in COVID-19 patients. The combination of BUN 4.6 mmol/L and D-dimer > 0.845 mu g/mL appears to identify patients at high risk of in-hospital mortality, therefore it may prove to be a powerful risk assessment tool for severe COVID-19 patients. (c) 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
  •  
2.
  • Hansen, Nicolai S.B., et al. (författare)
  • Development and mechanistic investigation of the dehydrogenation of alcohols with an iron(iii) salen catalyst
  • 2023
  • Ingår i: Organic and biomolecular chemistry. - : Royal Society of Chemistry (RSC). - 1477-0520 .- 1477-0539. ; 21:23, s. 4794-4800
  • Tidskriftsartikel (refereegranskat)abstract
    • The iron(iii) salen complex (R,R)-N,N′-bis(salicylidene)-1,2-cyclohexanediamineiron(iii) chloride has been developed as a catalyst for the acceptorless dehydrogenation of alcohols. The complex catalyzes the direct synthesis of imines in good yields from different primary alcohols and amines with the liberation of hydrogen gas. The mechanism has been investigated experimentally with labelled substrates and theoretically with density functional theory calculations. In contrast to the corresponding manganese(iii) salen-catalyzed dehydrogenation, it has not been possible to identify a homogeneous catalytic pathway with the iron complex. Instead, poisoning experiments with trimethylphosphine and mercury indicated that the catalytically active species are heterogeneous small iron particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy