SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yen Po) "

Sökning: WFRF:(Liu Yen Po)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Benter, Sandra, et al. (författare)
  • Tuneable 2D surface Bismuth incorporation on InAs nanosheets
  • 2023
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 15:21, s. 9551-9559
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical bonding at the interface between compound semiconductors and metals is central in determining electronic and optical properties. In this study, new opportunities for controlling this are presented for nanostructures. We investigate Bi adsorption on 2D wurtzite InAs (1120) nanosheets and find that temperature-controlled Bi incorporation in either anionic- or cationic-like bonding is possible in the easily accesible range between room temperature and 400 degrees C. This separation could not be achieved for ordinary zinc blende InAs(110) surfaces. As the crystal structures of the two surfaces have identical nearest neighbour configurations, this indicates that overall geometric differences can significantly alter the adsorption and incorporation. Ab initio theoretical modelling confirms observed adsorption results, but indicate that both the formation energies as well as kinetic barriers contributes to the observed temperature dependent behaviour. Further, we find that the Bi adsorption rate can differ by at least 2.5 times between the two InAs surfaces while being negligible for standard Si substrates under similar deposition conditions. This, in combination with the observed interface control, provides an excellent opportunity for tuneable Bi integration on 2D InAs nanostructures on standard Si substrates.
  •  
4.
  • Liu, Yen Po, et al. (författare)
  • Low temperature scanning tunneling microscopy and spectroscopy on laterally grown InxGa1-xAs nanowire devices
  • 2020
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 117:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Laterally grown InxGa1-xAs nanowires (NWs) are promising candidates for radio frequency and quantum computing applications, which, however, can require atomic scale surface and interface control. This is challenging to obtain, not least due to ambient air exposure between fabrication steps, which induces surface oxidation. The geometric and electronic surface structures of InxGa1-xAs NWs and contacts, which were grown directly in a planar configuration, exposed to air, and then subsequently cleaned using atomic hydrogen, are studied using low-temperature scanning tunneling microscopy and spectroscopy (STM/S). Atomically flat facets witha root mean square roughness of 0.12 nm and the InGaAs (001) 4 × 2 surface reconstruction areobserved on the top facet of the NWs and the contacts. STS shows a surface bandgap variation of 30 meV from the middle to the end of the NWs, which is attributed to a compositional variation of the In/Ga element concentration. The well-defined facets and small bandgap variations found after area selective growth and atomic hydrogen cleaning are a good starting point for achieving high-quality interfaces during further processing.
  •  
5.
  • D'Acunto, Giulio, et al. (författare)
  • Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studies
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:12, s. 3915-3922
  • Tidskriftsartikel (refereegranskat)abstract
    • III-V semiconductors, such as InAs, with an ultrathin high-κ oxide layer have attracted a lot of interests in recent years as potential next-generation metal-oxide-semiconductor field-effect transistors, with increased speed and reduced power consumption. The deposition of the high-κ oxides is nowadays based on atomic layer deposition (ALD), which guarantees atomic precision and control over the dimensions. However, the chemistry and the reaction mechanism involved are still partially unknown. This study reports a detailed time-resolved analysis of the ALD of high-κ hafnium oxide (HfOx) on InAs(100). We use ambient pressure X-ray photoemission spectroscopy and monitor the surface chemistry during the first ALD half-cycle, i.e., during the deposition of the metalorganic precursor. The removal of In and As native oxides, the adsorption of the Hf-containing precursor molecule, and the formation of HfOx are investigated simultaneously and quantitatively. In particular, we find that the generally used ligand exchange model has to be extended to a two-step model to properly describe the first half-cycle in ALD, which is crucial for the whole process. The observed reactions lead to a complete removal of the native oxide and the formation of a full monolayer of HfOx already during the first ALD half-cycle, with an interface consisting of In-O bonds. We demonstrate that a sufficiently long duration of the first half-cycle is essential for obtaining a high-quality InAs/HfO2 interface.
  •  
6.
  • Fast, Jonatan, et al. (författare)
  • Optical-Beam-Induced Current in InAs/InP Nanowires for Hot-Carrier Photovoltaics
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:6, s. 7728-7734
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the excess energy of charge carriers excited above the band edge (hot carriers) could pave the way for optoelectronic devices, such as photovoltaics exceeding the Shockley-Queisser limit or ultrafast photodetectors. Semiconducting nanowires show promise as a platform for hot-carrier extraction. Proof of principle photovoltaic devices have already been realized based on InAs nanowires, using epitaxially defined InP segments as energy filters that selectively transmit hot electrons. However, it is not yet fully understood how charge-carrier separation, relaxation, and recombination depend on device design and on the location of optical excitation. Here, we introduce the use of an optical-beam-induced current (OBIC) characterization method, employing a laser beam focused close to the diffraction limit and a high precision piezo stage, to study the optoelectric performance of the nanowire device as a function of the position of excitation. The photocurrent response agrees well with modeling based on hot-electron extraction across the InP segment via diffusion. We demonstrate that the device is capable of producing power and estimate the spatial region within which significant hot-electron extraction can take place to be on the order of 300 nm away from the barrier. When comparing to other experiments on similar nanowires, we find good qualitative agreement, confirming the interpretation of the device function, while the extracted diffusion length of hot electrons varies. Careful control of the excitation and device parameters will be important to reach the potentially high device performance theoretically available in these systems.
  •  
7.
  • Langer, Fabian, et al. (författare)
  • Few-cycle lightwave-driven currents in a semiconductor at high repetition rate
  • 2020
  • Ingår i: Optica. - 2334-2536. ; 7:4, s. 276-279
  • Tidskriftsartikel (refereegranskat)abstract
    • When an intense, few-cycle light pulse impinges on a dielectric or semiconductor material, the electric field will interact nonlinearly with the solid, driving a coherent current. An asymmetry of the ultrashort, carrier-envelope-phase-stable waveform results in a net transfer of charge, which can be measured by macroscopic electric contact leads. This effect has been pioneered with extremely short, single-cycle laser pulses at low repetition rate, thus limiting the applicability of its potential for ultrafast electronics. We investigate lightwave-driven currents in gallium nitride using few-cycle laser pulses of nearly twice the duration and at a repetition rate 2 orders of magnitude higher than in previous work. We successfully simulate our experimental data with a theoretical model based on interfering multiphoton transitions, using the exact laser pulse shape retrieved from dispersion-scan measurements. Substantially increasing the repetition rate and relaxing the constraint on the pulse duration marks an important step forward toward applications of controlling currents with light.
  •  
8.
  • Liu, Yen-Po, et al. (författare)
  • Hydrogen plasma enhanced oxide removal on GaSb planar and nanowire surfaces
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332.
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to its high hole-mobility, GaSb is a highly promising candidate for high-speed p-channels in electronic devices. However, GaSb exhibits a comparably thick native oxide causing detrimental interface defects, which has been proven difficult to remove. Here we present full oxide removal from GaSb surfaces using effective hydrogen plasma cleaning, studied in-situ by synchrotron-based X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV). GaSb nanowires turn out to be cleaned faster and more efficiently than planar substrates. Since the UHV conditions are not scalable for industrial sample processing, H-plasma cleaning is furthermore used as pre-treatment prior to atomic layer deposition (ALD) of a protective high-k layer to demonstrate the use of the cleaning step in a more realistic fabrication situation. We observe a cleaning effect of the H-plasma even in the ALD environment, but we also find residual Ga- and Sb-oxides at the GaSb-high-k interface, which we attribute to re-oxidation of the cleaned surface. Our results indicate that an improved control of the ALD reactor vacuum environment could realize oxide- and defect-free interfaces in GaSb-based electronics.
  •  
9.
  • Liu, Yen-Po (författare)
  • Surfaces and interfaces of low dimensional III-V semiconductor devices
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The demand for fast and energy efficient (opto-)electronic applications needs high mobility semiconductor materials, such as InAs with a very high electron mobility and GaSb with a very high hole mobility. Beyond the material itself, also an innovative device geometry is needed, for example, the gate-all-around geometry that provides higher efficiency and electrostatic control for computational units. Vertically or laterally grown nanowires and nanosheets are excellent candidates for realizing such beneficial device geometries. The logic operations and charge transport could be realized in different device architectures, such as the concepts of tunnelFETs instead of classical FETs or new neuromorphic hardware instead of complementary metal-oxide-semiconductor (CMOS).With both the excellent functional properties of III-V materials and the flexibility of nanostructuring into 1D nanowires and 2D nanosheets, III-V semiconductors could be the stars for next-generation applications. For example, lateral grown InxGa1−xAs nanowires have a high spin-orbit coupling and moderate bandgap promising for quantum computing devices. GaSb nanowires are excellent high-speed p-channels for III-V CMOS, and InAs/InP nanowires have an energy barrier in the axial direction which can be used for photovoltaic and sensor applications. Due to the high surface-to-bulk ratio of nanowires and nanosheets, their surface condition becomes the key to the device performance. In this work, III-V nanowire and nanosheet devices are studied with an emphasis on surfaces and interfaces, using a wide range of characterization methods. The dissertation explores the fabrication of novel nano-devices and the characterization of their surface chemistry, topography, electronic properties, electrical transport and interaction with photons. The characterization techniques include scanning tunneling microscopy/spectroscopy (STM/S) for atomic level topography and electronic properties. Development of a Scanning gate microscopy (SGM) system with additional single-mode focused lasers for simultaniously probing influence of static and optical fields. Synchrotron based X-ray techniques, mainly X-ray photoelectron spectroscopy (XPS) is used for evaluating surface chemistry. Surface treatment processes, e.g., ultra-high vacuum (UHV) annealing, digital etchants, atomic hydrogen cleaning, and atomic layer deposition (ALD), are applied and the resulting surface chemistry, structure and electronic properties measured. Beyond studying the surface properties, we also investigate the device efficiency and performance down to the nanometer scale. Therefore, we perform measurements to monitor the device while the local gate and/or a focused light interact with the device.In conclusion, in this thesis the surfaces and interfaces of low-dimensional materials for future device applications are studied using many different characterization methods. It is the hope that the thesis will assist in the progress toward novel devices and improve the energy efficiency and performance of devices. Both the method development and the results give relevant contributions opening for future quantum technologies and (opto)electronics.
  •  
10.
  • Mikkelä, M.-H., et al. (författare)
  • Bismuth-oxide nanoparticles : study in a beam and as deposited
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 26:13, s. 10369-10381
  • Tidskriftsartikel (refereegranskat)abstract
    • Bi2O3 is a promising material for solid-oxide fuel cells (SOFC) due to the high ionic conductivity of some phases. The largest value is reached for its δ-phase, but it is normally stable at temperatures too high for SOFC operation, while nanostructured oxide is believed to have more suitable stabilization temperature. However, to manufacture such a material with a controlled chemical composition is a challenging task. In this work, we investigated the fabrication of nanostructured Bi2O3 films formed by deposition of free Bi-oxide nanoparticles created in situ. The particle-production method was based on reactive sputtering and vapour aggregation. Depending on the fabrication conditions, the nanoparticles contained either a combination of Bi–metal and Bi-oxide, or only Bi-oxide. Prior to deposition, the free particles were probed in the beam – by synchrotron-based photoelectron spectroscopy (PES), which allowed assessing their composition "on the-fly". The nanoparticle films obtained after deposition were studied by PES, scanning electron microscopy, transmission electron microscopy, and electron diffraction. The films' chemical composition, grain dimensions, and crystal structure were probed. Our analysis suggests that our method produced Bi-oxide films in more than one polymorph of Bi2O3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy