SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yizhu) "

Sökning: WFRF:(Liu Yizhu)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biasin, Elisa, et al. (författare)
  • Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated[Co(terpy)2]2$
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 1079-7114 .- 0031-9007. ; 117:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.
  •  
2.
  • Canton, S. E., et al. (författare)
  • Watching the dynamics of electrons and atoms at work in solar energy conversion
  • 2015
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry. - 1359-6640 .- 1364-5498. ; 185, s. 51-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray
  •  
3.
  • Canton, Sophie, et al. (författare)
  • Mapping the Ultrafast Changes of Continuous Shape Measures in Photoexcited Spin Crossover Complexes without Long-Range Order
  • 2015
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:6, s. 3322-3330
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishing a tractable yet complete reaction coordinate for the spin-state interconversion in d(4)-d(7) transition metal complexes is an integral aspect of controlling the dynamics that govern their functionality. For spin crossover phenomena, the limitations of a single-mode approximation that solely accounts for an isotropic increase in the metal-ligand bond length have long been recognized for all but the simple octahedral monodentate FeII compounds. However, identifying the coupled deformations that also impact on the unimolecular rate constants remains experimentally and theoretically challenging, especially for samples that do not display long-range order or when crystallization profoundly alters the dynamics. Owing to the rapid progress in ultrafast X-ray absorption spectroscopy (XAS), it is now possible to obtain transient structural information in any physical phase with unprecedented details. Using picosecond XAS and DFT modeling, the structure adopted by the photoinduced high-spin state of solvated [Fe(terpy)(2)](2+) (terpy: 2,2':6',2 ''-terpyridine) has been recently established. Based on these results, the methodology of the continuous shape measure is applied to classify and quantify the short-lived distortion of the first coordination shell. The reaction coordinate of the spin-state interconversion is clearly identified as a double axial bending. This finding sets a benchmark for gauging the influence of first-sphere and second-sphere interactions in the family of FeII complexes that incorporate terpy derivatives. Some implications for the optimization of related photoactive FeII complexes are also outlined.
  •  
4.
  • Canton, Sophie, et al. (författare)
  • Probing the Anisotropic Distortion of Photoexcited Spin Crossover Complexes with Picosecond X-ray Absorption Spectroscopy
  • 2014
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:8, s. 4536-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • For numerous spin crossover complexes, the anisotropic distortion of the first coordination shell around the transition metal center governs the dynamics of the high-spin/low-spin interconversion. However, this structural parameter remains elusive for samples that cannot be investigated with crystallography. The present work demonstrates how picosecond X-ray absorption spectroscopy is able to capture this specific deformation in the photoinduced high-spin state of solvated [Fe(terpy)(2)](2+), a complex which belongs to the prominent family of spin crossover building blocks with nonequivalent metal-ligand bonds. The correlated changes in Fe-N-Axial, Fe-N-Distal, and bite angle N-Distal-Fe-N-Axial extracted from the measurements are in very good agreement with those predicted by DFT calculations in D-2d symmetry. The outlined methodology is generally applicable to the characterization of ultrafast nuclear rearrangements around metal centers in photoactive molecular complexes and nanomaterials, including those that do not display long-range order.
  •  
5.
  • Canton, Sophie, et al. (författare)
  • Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts
  • 2013
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 4:11, s. 1972-1976
  • Tidskriftsartikel (refereegranskat)abstract
    • Building a detailed understanding of the structure function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 +/- 0.03 angstrom. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices.
  •  
6.
  • Canton, Sophie, et al. (författare)
  • Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor-acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.
  •  
7.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
8.
  • Chábera, Pavel, et al. (författare)
  • Band-selective dynamics in charge-transfer excited iron carbene complexes
  • 2019
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 216:2019, s. 191-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast dynamics of photoinduced charge transfer processes in light-harvesting systems based on Earth-abundant transition metal complexes are of current interest for the development of molecular devices for solar energy conversion applications. A combination of ultrafast spectroscopy and first principles quantum chemical calculations of a recently synthesized iron carbene complex is used to elucidate the ultrafast excited state evolution processes in these systems with particular emphasis on investigating the underlying reasons why these complexes show promise in terms of significantly extended lifetimes of charge transfer excited states. Together, our results challenge the traditional excited state landscape for iron-based light harvesting transition metal complexes through radically different ground and excited state properties in alternative oxidation states. This includes intriguing indications of rich band-selective excited state dynamics on ultrafast timescales that are interpreted in terms of excitation energy dependence for excitations into a manifold of charge-transfer states. Some implications of the observed excited state properties and photoinduced dynamics for the utilization of iron carbene complexes for solar energy conversion applications are finally discussed.
  •  
9.
  • Chábera, Pavel, et al. (författare)
  • FeII Hexa N-Heterocyclic Carbene Complex with a 528 ps Metal-To-Ligand Charge-Transfer Excited-State Lifetime
  • 2018
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 9:3, s. 459-463
  • Tidskriftsartikel (refereegranskat)abstract
    • The iron carbene complex [FeII(btz)3](PF6)2 (where btz = 3,3′-dimethyl-1,1′-bis(p-Tolyl)-4,4′-bis(1,2,3-Triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-To-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a 3MLCT state with a 528 ps excited-state lifetime in CH3CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported FeII complex. The low potential of the [Fe(btz)3]3+/[Fe(btz)3]2+ redox couple makes the 3MLCT state of [FeII(btz)3]2+ a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [FeIII(btz)3]3+ form of this complex, these results show that the FeII and FeIII oxidation states of the same Fe(btz)3 complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron N-heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions.
  •  
10.
  • Ericson, Fredric, et al. (författare)
  • Electronic structure and excited state properties of iron carbene photosensitizers - A combined X-ray absorption and quantum chemical investigation
  • 2017
  • Ingår i: Chemical Physics Letters. - : Elsevier BV. - 0009-2614. ; 683, s. 559-566
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure and excited state properties of a series of iron carbene photosensitizers are elucidated through a combination of X-ray absorption measurements and density functional theory calculations. The X-ray absorption spectra are discussed with regard to the unusual bonding environment in these carbene complexes, highlighting the difference between ferrous and ferric carbene complexes. The valence electronic structure of the core excited FeIII-3d5 complex is predicted by calculating the properties of a CoIII-3d6 carbene complex using the Z+1 approximation. Insight is gained into the potential of sigma-donating ligands as strategy to tune properties for light harvesting applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy