SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yongchang) "

Sökning: WFRF:(Liu Yongchang)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Xi, et al. (författare)
  • Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:6, s. 10553-10564
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump–probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400–1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.
  •  
2.
  • Han, Mei, et al. (författare)
  • Promoted Self-construction of β-NiOOH in Amorphous High Entropy Electrocatalysts for the Oxygen Evolution Reaction
  • 2022
  • Ingår i: Applied Catalysis B. - : Elsevier. - 0926-3373 .- 1873-3883. ; 301
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of an efficient electrocatalyst for the oxygen evolution reaction (OER) is urgently required for sustainable renewable-energy conversion and storage. Due to the increased chemical complexity, multimetallic catalysts provide flexibility to alter their electronic and crystal structure to attain a superior intrinsic catalytic activity via synergistic effects, which is seldom accomplished using single metal catalysts. However, the high chemical complexity increases the difficulty to prepare elemental homogenous catalysts and reveal their synergistic effect during OER process, which further hinder the design of multimetallic catalysts. Here, high entropy concept is utilized to design an NiFeCoMnAl oxide with amorphous structure as OER catalyst. The direct evidence of active Ni sites is provided by the operando Raman measurements and Fe can modify oxygen intermediates binding energy on Ni sites. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) reveal that the incorporation of Mn can construct the electron-rich environment of active Ni center, and the relatively lower oxidation state of Ni facilitates the self-construction of β-NiOOH intermediates, which shows promoted OER activity as confirmed by density functional theory calculations. Doping Co can enhance the conductivity and doping Al leads to the formation of nanoporous structure through dealloying process, thus each component is essential for improving OER performance. The optimized NiFeCoMnAl catalyst exhibits an overpotential of 190 mV at 10 mA cm-2 in 1 M KOH solution, much superior to the ternary and quaternary counterparts. This work sheds light on understanding the origin of high entropy catalysts’ OER activity and thereby enables the rational design of multinary transition metallic catalysts.
  •  
3.
  •  
4.
  • Wang, Haibin, et al. (författare)
  • Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:1, s. 346-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic strains in metallic catalysts induce enhanced selectivity for carbon dioxide reduction (CO2R) toward valuable multicarbon (C2+) products. However, under working conditions, the structure of catalysts inevitably undergoes reconstruction, hardly retaining the initial strain. Herein, we present a metal/metal oxide synthetic strategy to introduce and maintain the tensile strain in a copper/ceria heterostructure, enabled by the presence of a thin interface layer of Cu2O/CeO2. The tensile strain in the copper domain and deficient electron environment around interfacial Cu sites resulted in strengthened adsorption of carbonaceous intermediates and promoted*CO dimerization. The strain effect in the copper/ceria heterostructure leads to an improved C2+ selectivity with a maximum Faradaic efficiency of 76.4% and a half-cell power conversion efficiency of 49.1%. The fundamental insights gained from this system can facilitate the rational design of heterostructure catalysts for CO2R.
  •  
5.
  • Wang, Ning, et al. (författare)
  • Boride-derived oxygen-evolution catalysts
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.
  •  
6.
  • Xu, Xiaoran, et al. (författare)
  • Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma
  • 2023
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH & BULL;) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@ B12H12) is reported. Compared to the traditional metal-based CDT agents, TPT@B12H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12H12]-& BULL; and [TPT-H]2+ have the capacity to decompose hydrogen into 1O2, OH & BULL;, and O2-& BULL;. With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12H12 increases the levels of 1O2, OH & BULL;, and O2-& BULL;. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. This study specifically highlights the great clinical translational potential of TPT@B12H12 as a CDT reagent. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@B12H12), a metal-free chemodynamic therapy (CDT) agent, decreases the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. image
  •  
7.
  • Xu, Xiaoran, et al. (författare)
  • Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma
  • 2024
  • Ingår i: Small. - : John Wiley & Sons. - 1613-6810 .- 1613-6829. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH & BULL;) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@ B12H12) is reported. Compared to the traditional metal-based CDT agents, TPT@B12H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12H12]-& BULL; and [TPT-H]2+ have the capacity to decompose hydrogen into 1O2, OH & BULL;, and O2-& BULL;. With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12H12 increases the levels of 1O2, OH & BULL;, and O2-& BULL;. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. This study specifically highlights the great clinical translational potential of TPT@B12H12 as a CDT reagent. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@B12H12), a metal-free chemodynamic therapy (CDT) agent, decreases the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. image
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy