SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Llobet Antoni Professor) "

Sökning: WFRF:(Llobet Antoni Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Bao-Lin, 1976- (författare)
  • Development of metal complexes for water oxidation
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In an artificial version of photosynthesis, sunlight and water are used to produce fuels. Our research focuses on the bottleneck in this process, the photooxidation of water. In the course of developing a water oxidation catalyst, a number of metal complexes have been synthesised, characterised, and studied for catalytic activity. Three of them are dinuclear complexes (Ru, Co and Cu) of 2,6-bis[(2-hydroxybenzyl)-(2-pyridylmethyl)aminomethyl]-4-methylphenol (H3bbpmp). The fourth is a dimeric Ru complex with a ligand containing imidazole and phenol motifs. Additionally, a dinuclear Mn complex with a ligand that contains benzimidazoles and carboxylates coordinating to the metal atoms was also developed. This Mn complex was then covalently linked to [Ru(bpy)3]2+-type photosensitisers, resulting in three different bimetallic dyads. Finally, a dinuclear Fe complex containing the same ligand as the dinuclear Mn complex was synthesised.The potential of the three H3bbpmp complexes as catalysts for oxidation of organic compounds was investigated and it was found that the Ru complex catalyses the oxidation of alcohols to the corresponding ketone or aldehyde using (diacetoxyiodo)benzene as oxidant. The Co complex functions as an electron transfer mediator in a coupled catalytic system for allylic oxidation using oxygen gas. The oxidation of 3,5-di-tert-butylcatechol to the corresponding ortho-quinone with oxygen gas using the copper complex proved that it can be considered as a model of catecholase. The dimeric Ru complex and the dinuclear Mn and Fe complexes proved to catalyse water oxidation when employing stoichiometric amounts of the oxidant [Ru(bpy)3](PF6)3. Furthermore, using [Ru(bpy)2(deeb)](PF6)2 as photosensitiser together with Na2S2O8 as sacrificial electron acceptor in aqueous phosphate buffer at pH = 7.2, photochemical water oxidation was demonstrated. The bimetallic dyads however, did not show catalytic activity for the oxidation of water.
  •  
2.
  • Laine, Tanja M., 1979- (författare)
  • Development of Ruthenium Catalysts for Water Oxidation
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An increasing global energy demand requires alternative fuel sources. A promising method is artificial photosynthesis. Although, the artificial processes are different from the natural photosynthetic process, the basic principles are the same, i.e. to split water and to convert solar energy into chemical energy. The energy is stored in bonds, which can at a later stage be released upon combustion. The bottleneck in the artificial systems is the water oxidation. The aim of this research has been to develop catalysts for water oxidation that are stable, yet efficient. The molecular catalysts are comprised of organic ligands that ultimately are responsible for the catalyst structure and activity. These ligands are often based on polypyridines or other nitrogen-containing aromatic compounds. This thesis describes the development of molecular ruthenium catalysts and the evaluation of their ability to mediate chemical and photochemical oxidation of water. Previous work from our group has shown that the introduction of negatively charged groups into the ligand frameworks lowers the redox potentials of the metal complexes. This is beneficial as it makes it possible to drive water oxidation with [Ru(bpy)3]3+-type oxidants (bpy = 2,2’-bipyridine), which can be photochemically generated from the corresponding [Ru(bpy)3]2+ complex. Hence, all the designed ligands herein contain negatively charged groups in the coordination site for ruthenium.The first part of this thesis describes the development of two mononuclear ruthenium complexes and the evaluation of these for water oxidation. Both complexes displayed low redox potentials, allowing for water oxidation to be driven either chemically or photochemically using the mild one-electron oxidant [Ru(bpy)3]3+.The second part is a structure–activity relationship study on several analogues of mononuclear ruthenium complexes. The complexes were active for water oxidation and the redox potentials of the analogues displayed a linear relationship with the Hammet σmeta parameter. It was also found that the complexes form high-valent Ru(VI) species, which are responsible for mediating O–O bond formation.The last part of the thesis describes the development of a dinuclear ruthenium complex and the catalytic performance for chemical and photochemical water oxidation. It was found that the complex undergoes O–O bond formation via a bridging peroxide intermediate, i.e. an I2M–type mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy