SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lobaskin V) "

Sökning: WFRF:(Lobaskin V)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Castaneda-Priego, R., et al. (författare)
  • On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials
  • 2012
  • Ingår i: Journal of Physics: Condensed Matter. - : IOP Publishing. - 1361-648X .- 0953-8984. ; 24:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions.
  •  
3.
  • Evilevitch, Alex, et al. (författare)
  • Structure and transport properties of a charged spherical microemulsion system
  • 2001
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 17:4, s. 1043-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure and transport properties of an oil-in-water microemulsion of weakly charged spherical micelles were studied experimentally using viscosity, NMR self-diffusion, and static and dynamic light scattering as well as theoretically by Brownian dynamics and Monte Carlo simulations and the Poisson-Boltzmann equation. The micelles contain decane covered by the nonionic surfactant pentaethylene glycol dodecyl ether (C12E5) and the ionic surfactant sodium dodecyl sulfate. The system has a constant surfactant-to-oil ratio, and the total volume fraction of surfactant and oil, , is varied between 0.01 0.46. The micelles were made weakly charged by replacing a small fraction (0.01, 0.04, and 0.06) of the nonionic surfactant with ionic surfactant, retaining the micellar size. Comparison between self-diffusion and viscosity coefficients measured as a function of concentration showed that the system obeys the generalized Stokes-Einstein relation at lower micellar concentrations. At higher micellar concentrations, a slightly modified equation can be used upon the addition of an extra frictional factor due to stronger interactions. The collective diffusion coefficient shows a maximum as a function of the volume fraction. This result is in good agreement with predictions based on a charged hard-sphere model with hydrodynamic interactions. Other static and dynamic properties such as osmotic pressure, osmotic compressibility, and self-diffusion coefficient were obtained theoretically from simulations based on a charged-sphere model. The static and dynamic properties of the charged hard-sphere model qualitatively describe the behavior of the charged microemulsion micelles. At high volume fractions, > 0.1, the agreement is quantitative, but at < 0.1 the effect of the charge is smaller than what is predicted from the model.
  •  
4.
  • Lynch, I, et al. (författare)
  • Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?
  • 2020
  • Ingår i: Nanomaterials (Basel, Switzerland). - : MDPI AG. - 2079-4991. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a “nano” extension to the InChI standard.
  •  
5.
  • Romanczuk, P., et al. (författare)
  • Motion of Euglena gracilis : Active fluctuations and velocity distribution
  • 2015
  • Ingår i: The European Physical Journal Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 224:7, s. 1215-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.
  •  
6.
  • Romensky, Maxym, et al. (författare)
  • Orientational hysteresis in swarms of active particles in external field
  • 2015
  • Ingår i: The European Physical Journal Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 224:7, s. 1359-1376
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulations of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and the one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents are non-universal and depend on the system's parameters, their limiting values can be predicted using a generic model of dynamic hysteresis. We also discuss similarities and differences between the swarm ordering dynamics and two-dimensional magnets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy